【題目】(探究)如圖1,在等邊△ABC中,AB=4,點(diǎn)D、E分別為邊BC、AB上的點(diǎn),連結(jié)AD、DE,若∠ADE=60°,BD=3,求BE的長(zhǎng).
(拓展)如圖2,在△ABD中,AB=4,點(diǎn)E為邊AB上的點(diǎn),連結(jié)DE,若∠ADE=∠ABD=45°,若DB=3,= .
【答案】【探究】BE=;【拓展】
【解析】
探究:過(guò)點(diǎn)A作AF⊥BC于F,由等邊三角形的性質(zhì)得出BF=CF=BC=2,由勾股定理求出AF=,則DF=BD-BF=1,由勾股定理求出AD=,證得△ABD∽△ADE,得出,解得AE=,即可得出結(jié)果;
拓展:過(guò)點(diǎn)A作AF⊥BC于F,易證△ABF是等腰直角三角形,則AF=BF=AB=2,DF=DB-BF=,由勾股定理求出AD=,證得△ADE∽△ABD,得出,求出AE=,BD=AB-AE=,則即可得出結(jié)果.
探究:∵△ABC是等邊三角形,
∴∠B=∠C=60°,AB=BC=4,
過(guò)點(diǎn)A作AF⊥BC于F,如圖①所示:
則BF=CF=BC=2,AF=,
∴DF=BD-BF=3-2=1,
∴AD=,
根據(jù)三角形的內(nèi)角和定理得,∠ADB+∠BAD=120°,
∵∠ADE=60°,
∴∠BAD+∠AED=120°,
∴∠ADB=∠AED,
∵∠B=∠ADE=60°,
∴△ABD∽△ADE,
∴,
即:,
解得:AE=,
∴BE=AB-AE=4-=;
拓展:過(guò)點(diǎn)A作AF⊥BC于F,如圖②所示:
∵∠ABD=45°,
∴△ABF是等腰直角三角形,
∴AF=BF=AB=2,
∴DF=DB-BF=3-2=,
∴AD=,
∵∠ADE=∠ABD=45°,∠A=∠A,
∴△ADE∽△ABD,
∴,
∴AE=,
∴BD=AB-AE=4-=,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+3過(guò)A(﹣3,0),B(1,0)兩點(diǎn),交y軸于點(diǎn)C.
(1)求該拋物線(xiàn)的表達(dá)式.
(2)設(shè)P是該拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)△PAB的面積等于△ABC的面積時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,E是BC邊上的一點(diǎn),將矩形ABCD沿折痕AE折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處,PC=4(如圖1).
(1)求AB的長(zhǎng);
(2)擦去折痕AE,連結(jié)PB,設(shè)M是線(xiàn)段PA的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)P、A不重合).N是AB沿長(zhǎng)線(xiàn)上的一個(gè)動(dòng)點(diǎn),并且滿(mǎn)足PM=BN.過(guò)點(diǎn)M作MH⊥PB,垂足為H,連結(jié)MN交PB于點(diǎn)F(如圖2).
①若M是PA的中點(diǎn),求MH的長(zhǎng);
②試問(wèn)當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線(xiàn)段FH的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線(xiàn)段FH的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,點(diǎn)M是AB的中點(diǎn),連接MC,點(diǎn)P是線(xiàn)段BC延長(zhǎng)線(xiàn)上一點(diǎn),且,連接MP交AC于點(diǎn)H.將射線(xiàn)MP繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)交線(xiàn)段CA的延長(zhǎng)線(xiàn)于點(diǎn)D.
(1)找出與相等的角,并說(shuō)明理由.
(2)如圖2,,求的值.
(3)在(2)的條件下,若,求線(xiàn)段AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD和正方形CEFC中,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),EH與CF交于點(diǎn)O.則HE的長(zhǎng)為( )
A. 2B. C. 2D. 或2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“綠色生活,美麗家園”號(hào)召,某社區(qū)計(jì)劃種植甲、乙兩種花卉來(lái)美化小區(qū)環(huán)境.若種植甲種花卉,乙種花卉,共需430元;種植甲種花卉,乙種花卉,共需260元.
(1)求:該社區(qū)種植甲種花卉和種植乙種花卉各需多少元?
(2)該社區(qū)準(zhǔn)備種植兩種花卉共且費(fèi)用不超過(guò)6300元,那么社區(qū)最多能種植乙種花卉多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻EF最長(zhǎng)可利用28米),圍成一個(gè)矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長(zhǎng)的墻的材料.
(1)當(dāng)矩形的長(zhǎng)BC為多少米時(shí),矩形花園的面積為300平方米;
(2)能否圍成480平方米的矩形花園,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E與點(diǎn)F分別在線(xiàn)段AC、BC上,且四邊形DEFG是正方形。
(1)求證AE=CG,并說(shuō)明理由。
(2)連接AG,若AB=17,DG=13,求AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根的平方和為,那么的值是( )
A. 5 B. -1 C. 5或-1 D. -5或1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com