【題目】(探究)如圖1,在等邊ABC中,AB4,點(diǎn)D、E分別為邊BCAB上的點(diǎn),連結(jié)AD、DE,若ADE60°,BD3,求BE的長(zhǎng).

(拓展)如圖2,在ABD中,AB4,點(diǎn)E為邊AB上的點(diǎn),連結(jié)DE,若ADEABD45°,若DB3, 

【答案】【探究】BE;【拓展】

【解析】

探究:過(guò)點(diǎn)AAFBCF,由等邊三角形的性質(zhì)得出BF=CF=BC=2,由勾股定理求出AF=,則DF=BD-BF=1,由勾股定理求出AD=,證得ABD∽△ADE,得出,解得AE=,即可得出結(jié)果;

拓展:過(guò)點(diǎn)AAFBCF,易證ABF是等腰直角三角形,則AF=BF=AB=2,DF=DB-BF=,由勾股定理求出AD=,證得ADE∽△ABD,得出,求出AE=,BD=AB-AE=,則即可得出結(jié)果.

探究:∵△ABC是等邊三角形,

∴∠B=C=60°,AB=BC=4,

過(guò)點(diǎn)AAFBCF,如圖①所示:

BF=CF=BC=2,AF=,

DF=BD-BF=3-2=1

AD=,

根據(jù)三角形的內(nèi)角和定理得,∠ADB+BAD=120°

∵∠ADE=60°,

∴∠BAD+AED=120°,

∴∠ADB=AED,

∵∠B=ADE=60°,

∴△ABD∽△ADE,

,

即:,

解得:AE=,

BE=AB-AE=4-=

拓展:過(guò)點(diǎn)AAFBCF,如圖②所示:

∵∠ABD=45°

∴△ABF是等腰直角三角形,

AF=BF=AB=2

DF=DB-BF=3-2=,

AD=,

∵∠ADE=ABD=45°,∠A=A,

∴△ADE∽△ABD

,

AE=,

BD=AB-AE=4-=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)yax2+bx+3過(guò)A(30),B(1,0)兩點(diǎn),交y軸于點(diǎn)C

(1)求該拋物線(xiàn)的表達(dá)式.

(2)設(shè)P是該拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)△PAB的面積等于△ABC的面積時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD的一條邊AD=8EBC邊上的一點(diǎn),將矩形ABCD沿折痕AE折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處,PC=4(如圖1).

1)求AB的長(zhǎng);

2)擦去折痕AE,連結(jié)PB,設(shè)M是線(xiàn)段PA的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)P、A不重合).NAB沿長(zhǎng)線(xiàn)上的一個(gè)動(dòng)點(diǎn),并且滿(mǎn)足PM=BN.過(guò)點(diǎn)MMH⊥PB,垂足為H,連結(jié)MNPB于點(diǎn)F(如圖2).

MPA的中點(diǎn),求MH的長(zhǎng);

試問(wèn)當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線(xiàn)段FH的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線(xiàn)段FH的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,,,點(diǎn)MAB的中點(diǎn),連接MC,點(diǎn)P是線(xiàn)段BC延長(zhǎng)線(xiàn)上一點(diǎn),且,連接MPAC于點(diǎn)H.將射線(xiàn)MP繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)交線(xiàn)段CA的延長(zhǎng)線(xiàn)于點(diǎn)D

1)找出與相等的角,并說(shuō)明理由.

2)如圖2,,求的值.

3)在(2)的條件下,若,求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形CEFC中,點(diǎn)DCG上,BC1CE3,HAF的中點(diǎn),EHCF交于點(diǎn)O.則HE的長(zhǎng)為(  )

A. 2B. C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)“綠色生活,美麗家園”號(hào)召,某社區(qū)計(jì)劃種植甲、乙兩種花卉來(lái)美化小區(qū)環(huán)境.若種植甲種花卉,乙種花卉,共需430元;種植甲種花卉,乙種花卉,共需260元.

1)求:該社區(qū)種植甲種花卉和種植乙種花卉各需多少元?

2)該社區(qū)準(zhǔn)備種植兩種花卉共且費(fèi)用不超過(guò)6300元,那么社區(qū)最多能種植乙種花卉多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(EF最長(zhǎng)可利用28),圍成一個(gè)矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長(zhǎng)的墻的材料.

(1)當(dāng)矩形的長(zhǎng)BC為多少米時(shí),矩形花園的面積為300平方米;

(2)能否圍成480平方米的矩形花園,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E與點(diǎn)F分別在線(xiàn)段AC、BC上,且四邊形DEFG是正方形。

(1)求證AE=CG,并說(shuō)明理由。

(2)連接AG,若AB=17,DG=13,求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根的平方和為,那么的值是(

A. 5 B. -1 C. 5-1 D. -51

查看答案和解析>>

同步練習(xí)冊(cè)答案