【題目】如圖,⊙O為△ABC的內(nèi)切圓,D、E、F分別為切點(diǎn),已知∠C90°,⊙O半徑長(zhǎng)為1cm,BC3cm,則AD長(zhǎng)度為__cm

【答案】3

【解析】

如圖,連接OD、OE、OF,由切線(xiàn)的性質(zhì)和切線(xiàn)長(zhǎng)定理可得ODAB,OEBC,OFAC,AF=ADBE=BD,接著證明四邊形OECF為正方形,則CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的長(zhǎng).

解:如圖,連接OE,OF,OD,

∵⊙O△ABC內(nèi)切圓,與三邊分別相切于D、E、F,

∴OD⊥ABOE⊥BC,OF⊥ACAFAD,BEBD

四邊形OECF為矩形

OFOE,

四邊形OECF為正方形,

∴CEOECFOF1cm

∴BEBD2cm,

∵AC2+BC2AB2

AD+12+9=(AD+22,

∴AD3cm,

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件是必然事件的是(

A.拋擲一枚硬幣四次,有兩次正面朝上B.射擊運(yùn)動(dòng)員射擊一次,命中十環(huán)

C.打開(kāi)電視頻道,正在播放《奔跑吧,兄弟》D.方程必有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)yx+3分別與x軸,y軸交于點(diǎn)A、點(diǎn)B,拋物線(xiàn)y=x2+2x2y軸交于點(diǎn)C,點(diǎn)E在拋物線(xiàn)y=x2+2x2的對(duì)稱(chēng)軸上移動(dòng),點(diǎn)F在直線(xiàn)AB上移動(dòng),CE+EF的最小值是( 。

A.4B.4.6C.5.2D.5.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為D,AB,DC的延長(zhǎng)線(xiàn)交于點(diǎn)E.

(1)求證:AC平分∠DAB;

(2)BE=3,CE=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.

1)該店每天賣(mài)出這兩種菜品共多少份?

2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣(mài)時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣(mài)1份;B種菜品售價(jià)每提高0.5元就少賣(mài)1份,如果這兩種菜品每天銷(xiāo)售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),CD平分∠ACB交⊙O于點(diǎn)D,交AB于點(diǎn)E

1)求證:△ABD為等腰直角三角形;

2)如圖2,ED繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到DE′,連接BE′,證明:BE′為⊙O的切線(xiàn);

3)如圖3,點(diǎn)F為弧BD的中點(diǎn),連接AF,交BD于點(diǎn)G,若DF1,求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,A0,8),B4,0),直線(xiàn)y=﹣x沿x軸作平移運(yùn)動(dòng),平移時(shí)交OAD,交OBC

1)當(dāng)直線(xiàn)y=﹣x從點(diǎn)O出發(fā)以1單位長(zhǎng)度/s的速度勻速沿x軸正方向平移,平移到達(dá)點(diǎn)B時(shí)結(jié)束運(yùn)動(dòng),過(guò)點(diǎn)DDEy軸交AB于點(diǎn)E,連接CE,設(shè)運(yùn)動(dòng)時(shí)間為ts).

①是否存在t值,使得CDE是以CD為腰的等腰三角形?如果能,請(qǐng)直接寫(xiě)出相應(yīng)的t值;如果不能,請(qǐng)說(shuō)明理由.

②將CDE沿DE翻折后得到FDE,設(shè)EDFADE重疊部分的面積為y(單位長(zhǎng)度的平方).求y關(guān)于t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍;

2)若點(diǎn)MAB的中點(diǎn),將MC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到MN,連接AN,請(qǐng)直接寫(xiě)出AN+MN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax2+bx+3x軸交于A(﹣3,0),Bl,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線(xiàn)的解析式;

2)點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),且滿(mǎn)足SPAO2SPCO,求出P點(diǎn)的坐標(biāo);

3)連接BC,點(diǎn)Ex軸一動(dòng)點(diǎn),點(diǎn)F是拋物線(xiàn)上一動(dòng)點(diǎn),若以BC、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ABC=90°,AB=4BC=2.點(diǎn)P從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng),連接PQ,將線(xiàn)段PQ繞點(diǎn)Q順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段QE,以PQ、QE為邊作正方形PQEF.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒(t0

1)點(diǎn)P到邊AB的距離為______(用含t的代數(shù)式表示)

2)當(dāng)PQBC時(shí),求t的值

3)連接BE,設(shè)BEQ的面積為S,求St之間的函數(shù)關(guān)系式

4)當(dāng)E、F兩點(diǎn)中只有一個(gè)點(diǎn)在ABC的內(nèi)部時(shí),直接寫(xiě)出t的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案