【題目】如圖,在每個(gè)小正方形邊長為1的方格紙中,的頂點(diǎn)都在方格紙格點(diǎn)上.

1)將經(jīng)過平移后得到,圖中標(biāo)出了點(diǎn)A的對應(yīng)點(diǎn)D,補(bǔ)全;

2)在圖中畫出的中線BG和高CH

3)在(1)條件下,ADCF的關(guān)系是________________

【答案】1)詳情見解析;(2)詳情見解析;(3)平行且相等

【解析】

1)根據(jù)平移的性質(zhì)分別找到各個(gè)點(diǎn)平移后的對應(yīng)點(diǎn),然后進(jìn)一步連接起來即可;

2)結(jié)合圖形,根據(jù)中線及高的性質(zhì)得出相應(yīng)的線段即可;

3)圖形平移后,對應(yīng)點(diǎn)連成的線段平行且相等,據(jù)此即可得出答案.

1)如圖所示,△DEF即為所求;

2)如圖所示,中線BG和高CH即為所求;

3)∵圖形平移后,對應(yīng)點(diǎn)連成的線段平行且相等,

ADCF的關(guān)系為平行且相等,

故答案為:平行且相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空:如圖,于點(diǎn)D,于點(diǎn)E,,,求的度數(shù).

解:∵,(已知)

∴( // )(

)(

∴( // )(

= )(等式性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
(3)點(diǎn)P為拋物線上一點(diǎn),若SPAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,已知∠1=∠2,∠C=∠D

1)判斷BDCE是否平行,并說明理由;(2)說明∠A=∠F的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理填空:如圖:

①若∠1=2,則

若∠DAB+ABC=180°,則

②當(dāng) 時(shí),∠ C+ABC=180°(

當(dāng) 時(shí),∠3=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平分,點(diǎn)A、B、C分別是射線OM、OE、ON上的動(dòng)點(diǎn)(點(diǎn)AB、C不與點(diǎn)重合),且,連接AC交射線OE于點(diǎn)D

1)求的度數(shù);

2)當(dāng)中有兩個(gè)相等的角時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:①過一點(diǎn)有且只有一條直線與已知直線平行;②過一點(diǎn)有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結(jié)、兩點(diǎn)的線段就是、兩點(diǎn)之間的距離,其中正確的有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對全校1200名學(xué)生進(jìn)行“校園安全知識(shí)”的教育活動(dòng),從1200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測試,成績評(píng)定按從高分到低分排列分為A、B、C、D四個(gè)等級(jí),繪制了圖①、圖②兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:

(1)求本次被抽查的學(xué)生共有多少人?
(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中“A”所在扇形圓心角的度數(shù);
(4)估計(jì)全校“D”等級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案