【題目】如圖,拋物線y=ax2+bx+c的圖象與x軸交于A(﹣1.0),B(3,0)兩點,與y軸交于點C(0,﹣3),頂點為D.

(1)求此拋物線的解析式.
(2)求此拋物線頂點D的坐標和對稱軸.
(3)探究對稱軸上是否存在一點P,使得以點P、D、A為頂點的三角形是等腰三角形?若存在,請求出所有符合條件的P點的坐標,若不存在,請說明理由.

【答案】
(1)

解:∵拋物線y=ax2+bx+c的圖象與x軸交于A(﹣1.0),B(3,0)兩點,與y軸交于點C(0,﹣3),

,

解得, ,

即此拋物線的解析式是y=x2﹣2x﹣3;


(2)

解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴此拋物線頂點D的坐標是(1,﹣4),對稱軸是直線x=1


(3)

解:存在一點P,使得以點P、D、A為頂點的三角形是等腰三角形,

設點P的坐標為(1,y),

當PA=PD時,

=

解得,y=﹣ ,

即點P的坐標為(1,﹣ );

當DA=DP時,

= ,

解得,y=﹣4±2 ,

即點P的坐標為(1,﹣4﹣2 )或(1,﹣4+2 );

當AD=AP時,

= ,

解得,y=±4,

即點P的坐標是(1,4)或(1,﹣4),

當點P為(1,﹣4)時與點D重合,故不符合題意,

由上可得,以點P、D、A為頂點的三角形是等腰三角形時,點P的坐標為(1,﹣ )或(1,﹣4﹣2 )或(1,﹣4+2 )或(1,4)


【解析】(1)根據(jù)拋物線y=ax2+bx+c的圖象與x軸交于A(﹣1.0),B(3,0)兩點,與y軸交于點C(0,﹣3),可以求得拋物線的解析式;(2)根據(jù)(1)中的解析式化為頂點式,即可得到此拋物線頂點D的坐標和對稱軸;(3)首先寫出存在,然后運用分類討論的數(shù)學思想分別求出各種情況下點P的坐標即可.本題考查二次函數(shù)綜合題,解題的關鍵是明確題意,找出所求問題需要的條件,利用分類討論的數(shù)學思想解答問題.
【考點精析】認真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、F、C、E在一條直線上,AB∥ED,AC∥FD,那么添加下列一個條件后,仍無法判定△ABC≌△DEF的是(

A.AB=DE
B.AC=DF
C.∠A=∠D
D.BF=EC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象與y軸交于點C(0,﹣6),與x軸的一個交點坐標是A(﹣2,0).

(1)求二次函數(shù)的解析式,并寫出頂點D的坐標;
(2)將二次函數(shù)的圖象沿x軸向左平移 個單位長度,當 y<0時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:“兩邊及其中一邊的對角分別相等的兩個三角形不一定全等”.但是,小亮發(fā)現(xiàn):當這兩個三角形都是銳角三角形時,它們會全等,除小亮的發(fā)現(xiàn)之外,當這兩個三角形都是時,它們也會全等;當這兩個三角形其中一個三角形是銳角三角形,另一個是時,它們一定不全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖1,則有a2+b2=c2;若△ABC為銳角三角形時,小明猜想:a2+b2>c2 , 理由如下:如圖2,過點A作AD⊥CB于點D,設CD=x.在Rt△ADC中,AD2=b2﹣x2 , 在Rt△ADB中,AD2=c2﹣(a﹣x)2
∴a2+b2=c2+2ax
∵a>0,x>0
∴2ax>0
∴a2+b2>c2
∴當△ABC為銳角三角形時,a2+b2>c2
所以小明的猜想是正確的.

(1)請你猜想,當△ABC為鈍角三角形時,a2+b2與c2的大小關系.
(2)溫馨提示:在圖3中,作BC邊上的高.
(3)證明你猜想的結論是否正確.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當△PMN周長取最小值時,則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,∠BAC=45°,AB=8,要使?jié)M足條件的△ABC唯一確定,那么BC邊長度x的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.

(1)問線段ECBF數(shù)量關系和位置關系?并給予證明.

(2)連AM,請問∠AME的大小是多少,如能求寫出過程;不能求,寫出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,E為CD的中點,H為BE上的一點, ,連接CH并延長交AB于點G,連接GE并延長交AD的延長線于點F.

(1)求證: ;
(2)若∠CGF=90°,求 的值.

查看答案和解析>>

同步練習冊答案