【題目】下列說法不正確的是( 。
A. 了解全市中學生對泰州“三個名城”含義的知曉度的情況,適合用抽樣調(diào)查
B. 若甲組數(shù)據(jù)方差S甲2=0.39,乙組數(shù)據(jù)方差S乙2=0.27,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
C. 某種彩票中獎的概率是 ,買100張該種彩票一定會中獎
D. 數(shù)據(jù)﹣1、1.5、2、2、4的中位數(shù)是2
【答案】C
【解析】試題由普查得到的調(diào)查結(jié)果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似;以及方差的意義,概率公式中位數(shù)的定義對各選項分析判斷后利用排除法求解.
試題解析:A、了解全市中學生對泰州“三個名城”含義的知曉度的情況,知道大概情況即可,適合用抽樣調(diào)查,正確,故本選項錯誤;
B、0.39<0.27,乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定,正確,故本選項錯誤;
C、概率是針對數(shù)據(jù)非常多時,趨近的一個數(shù),所以概率是,并不能說買100張該種彩票就一定能中獎,錯誤,故本選項正確;
D、五個數(shù)按照從小到大排列,第3個數(shù)是2,所以,中位數(shù)是2,正確,故本選項錯誤.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時出發(fā)相向而行,其中甲到達B地后立即返回,如圖是甲乙兩車離A地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象.
(1)求甲車離A地的距離y甲(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若它們出發(fā)第5小時時,離各自出發(fā)地的距離相等,求乙車離A地的距離y乙(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地長途汽車站規(guī)定前來乘車的旅客可以免費隨身攜帶一定質(zhì)量的行李,如果行李質(zhì)量超過規(guī)定,則應(yīng)交納行李費,行李費用y(元)與行李質(zhì)量x(千克)之間的關(guān)系可以用如圖所示的圖象表示,請觀察圖象回答下列問題:
(1)旅客最多能免費攜帶多少千克的行李?
(2)求行李費用y(元)與行李質(zhì)量x(千克)之間的函數(shù)關(guān)系式;
(3)一位旅客隨身攜帶了60千克的行李,他應(yīng)交納行李費多少元?
(4)另一位旅客交納了120元行李費,他攜帶的行李重多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形ABC(頂點是網(wǎng)格線的交點的三角形)的頂點B、C的坐標分別為(﹣2,0),(﹣1,2).
(1)請在如圖所示的網(wǎng)格中根據(jù)上述點的坐標建立對應(yīng)的直角坐標系;(只要畫圖,不需要說明)
(2)在(1)中建立的平面直角坐標系中,先畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,再畫出△A1B1C1關(guān)于x軸對稱的圖形△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大剛在晚上由燈柱A走向燈柱B,當他走到M點時,發(fā)覺他身后影子的頂部剛好接觸到燈柱A的底部,當他向前再走12米到N點時,發(fā)覺他身前的影子剛好接觸到燈柱B的底部,已知大剛的身高是1.6米,兩根燈柱的高度都是9.6米,設(shè)AM=NB=x米.求:兩根燈柱之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用直尺和圓規(guī)作一個角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依據(jù)是( )
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中, ∠ACB=90,AC=BC, 直線MN經(jīng)過點C,且AD⊥MN,BE⊥MN,垂足分別為D,E.
(1) 若直線MN在圖①位置時,猜想AD,BE,DE三條線段具有怎樣的數(shù)量關(guān)系?并且給出證明.
(2) 當直線MN在圖②位置時,(1)中的結(jié)論還成立嗎?若成立,請給出證明;若不成立,給出新的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正三角形OAB的頂點B的坐標為(0,2),點A在第一象限內(nèi),將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時點A′的橫坐標為3,則點B′的坐標為( 。
A. (2,4) B. (2,3) C. (3,4) D. (3,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道“兩邊和一角分別相等的兩個三角形不一定全等”,如圖(1),,,,但與卻不全等.但是如果兩個直角三角形呢?如圖(2),,,則嗎?
(1)根據(jù)圖(2)完成以下證明和閱讀:
和中,
,____________(勾股定理)
,____________
,.____________
在與中,,,
____________(____________)
歸納:斜邊和一條直角邊相等的兩個直角三角形全等;簡稱為“斜邊直角邊”或“”.
幾何語言如下:
在與中,
,
(2)如圖(3)已知,;求證:平分.(每一步都要填寫理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com