【題目】如圖,AB是⊙O的直徑,點D在AB的延長線上,點C、E是⊙O上的兩點,CE=CB,,延長AE交BC的延長線于點F.
(1)求證:CD是⊙O的切線;
(2)求證:CE=CF
(3)若BD=1,,求直徑AB的長.
【答案】(1)見解析;(2)見解析;(3)1
【解析】
(1)連接OC,可證得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD=90°,即結(jié)論得證;
(2)證明△ABC≌△AFC可得CB=CF,又CB=CE,則CE=CF;
(3)證明△DCB∽△DAC,可求出DA的長,再求出AB長即可.
(1)連接OC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠CAD+∠ABC=90°,
∵CE=CB,
∴∠CAE=∠CAB,
∵∠BCD=∠CAE,
∴∠CAB=∠BCD,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠OCB+∠BCD=90°,
∴∠OCD=90°,
∴CD是⊙O的切線;
(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,
∴△ABC≌△AFC(ASA),
∴CB=CF,
又∵CB=CE,
∴CE=CF;
(3)∵∠BCD=∠CAD,∠ADC=∠CDB,
∴△DCB∽△DAC,
∴,
∴
∴DA=2,
∴AB=ADBD=21=1,
科目:初中數(shù)學 來源: 題型:
【題目】設二次函數(shù)y=(ax-1)(x-a),其中a是常數(shù),且a≠0.
(1)當a=2時,試判斷點(-,-5)是否在該函數(shù)圖象上.
(2)若函數(shù)的圖象經(jīng)過點(1,-4),求該函數(shù)的表達式.
(3)當-1≤x≤+1時,y隨x的增大而減小,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.
(1)求∠CDE的度數(shù);
(2)求證:DF是⊙O的切線;
(3)若AC=2DE,求tan∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,是邊上的一動點(不與點、重合),連接,點關(guān)于直線的對稱點為,連接并延長交于點,連接,過點作交的延長線于點,連接.
(1)求證:;
(2)用等式表示線段與的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,AD是角平分線,F為BA延長線上的一點,AE平分∠FAC,DE∥BA交AE于E.求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+2x﹣3與x軸交于A,B兩點(點A在點B的左側(cè)),將這條拋物線向右平移m(m>0)個單位長度,平移后的拋物線與x軸交于C,D兩點(點C在點D的左側(cè)),若B,C是線段AD的三等分點,則m的值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】邊長為4的正方形ABCD中,點E是BC邊上的一個動點,連接DE,交AC于點N,過點D作DF⊥DE,交BA的延長線于點F,連接EF,交AC于點M.
(1)判定△DFE的形狀,并說明理由;
(2)設CE=x,△AMF的面積為y,求y與x之間的函數(shù)關(guān)系式;并求出當x為何值時y有最大值?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com