【題目】江西二套“誰是贏家”二七王比賽中,節(jié)目要統(tǒng)計(jì) 4 位選手的短信支持率,第一次 公布 4 位選手的短信支持率情況如圖 1,一段時(shí)間后,第二次公布 4 位選手的短信支持率,情況如圖 2,第二次公布短信支持率時(shí),每位選手的短信支持條數(shù)均有增加, 且每位選手增加的短信支持條數(shù)相同.

(1)比較圖1,圖2的變化情況,寫出2條結(jié)論;

(2)寫出第一次4位短信支持總條數(shù)與第二次4位短信支持總條數(shù)的等式關(guān)系,并證明這個(gè)等式關(guān)系.

【答案】1)①短信支持率高于25%的會(huì)下降;②短信支持率等于25%的會(huì)不變;(2)b=2a,證明見解析;

【解析】

1)從圖中得出3號(hào)支持率下降,24號(hào)的上升,1號(hào)的不變;

2)由于有次之間這4位選手的短信支持條數(shù)相同,則25%b-25%a=22.5%b-20%a=30%b-35%a,化簡即可.

1)兩次之間這4位選手的短信支持條數(shù)相同情況下,比較圖1,圖2的變化情況,可知:

①短信支持率高于25%的會(huì)下降;

②短信支持率等于25%的會(huì)不變;

③短信支持率低于25%的會(huì)上升;

2)設(shè)第一次4位短信支持總條數(shù)為a與第二次4位短信支持總條數(shù)b,它們等式關(guān)系為:b=2a

證明如下:

∵兩次之間這4位選手的短信支持條數(shù)相同

25%b-25%a=22.5%b-20%a=30%b-35%a

整理得:b=2a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四個(gè)螺絲將四條不可彎曲的本條圍成一個(gè)木框(形狀不限),不記螺絲大小,其中相鄰兩螺絲之間的距離依次為3,4,5,7.且相鄰兩本條的夾角均可調(diào)整,若調(diào)整木條的夾角時(shí)不破壞此木框,則任意兩個(gè)螺絲之間的最大距離是(

A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了方便行人,市政府打算修建如圖所示的過街天橋,橋面AD平行于地面BC,立柱AEBC于點(diǎn)E,立柱DFBC于點(diǎn)F,若AB=5米,tanB=C=30°.

(1)求橋面AD與地面BC之間的距離.

(2)因受地形限制,決定對(duì)該天橋進(jìn)行改建,使CD斜面的坡度變陡,將其30°坡角改為40°,改建后斜面為DG,試計(jì)算此次改建節(jié)省路面寬度CG大約應(yīng)是多少?(結(jié)果精確到0.1米,參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當(dāng)O為多少度時(shí),CD平分OCF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生自主意識(shí),拓寬學(xué)生視野,促進(jìn)學(xué)習(xí)與生活的深度融合我市某中學(xué)決定組織部分學(xué)生去青少年綜合實(shí)踐基地進(jìn)行綜合實(shí)踐活動(dòng)在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生現(xiàn)有甲、乙兩種大客車它們的載客量和租金如表所示

甲種客車

乙種客車

載客量(人/輛)

30

42

租金(元/輛)

300

400

學(xué)校計(jì)劃此實(shí)踐活動(dòng)的租車總費(fèi)用不超過3100元,為了安全每輛客車上至少要有2名老師.

1)參加此次綜合實(shí)踐活動(dòng)的老師和學(xué)生各有多少人?

2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,租用客車總數(shù)為多少輛?

3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD的兩邊AB,AD的長是關(guān)于x的方程x2mx0的兩個(gè)實(shí)數(shù)根.

(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為αα90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,EF過對(duì)角線的交點(diǎn),若AB4,BC7OE1.5,則四邊形EFDC的周長是( )

A. 14B. 17C. 10D. 11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校興趣小組想測(cè)量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1:.在離C點(diǎn)40米的D處,用測(cè)角儀測(cè)得大樓頂端A的仰角為37°,測(cè)角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin37°0.60,cos37°0.80,tan37°0.75,1.73.)

【答案】33.3.

【解析】

試題分析:延長AB交直線DC于點(diǎn)F,過點(diǎn)E作EHAF,垂足為點(diǎn)H,在RtBCF中利用坡度的定義求得CF的長,則DF即可求得,然后在直角AEH中利用三角函數(shù)求得AF的長,進(jìn)而求得AB的長.

試題解析:延長AB交直線DC于點(diǎn)F,過點(diǎn)E作EHAF,垂足為點(diǎn)H.

在RtBCF中, =i=1:,設(shè)BF=k,則CF=k,BC=2k.

BC=12,k=6,BF=6,CF=DF=DC+CF,DF=40+在RtAEH中,tanAEH=,AH=tan37°×(40+37.8(米),BH=BF﹣FH,BH=6﹣1.5=4.5.AB=AH﹣HB,AB=37.8﹣4.5=33.3.

答:大樓AB的高度約為33.3米.

考點(diǎn):1.解直角三角形的應(yīng)用-仰角俯角問題;2.解直角三角形的應(yīng)用-坡度坡角問題.

型】解答
結(jié)束】
24

【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會(huì)主義核心價(jià)值觀、未成年人基本文明禮儀規(guī)范”的知識(shí)競(jìng)賽活動(dòng),成績分為A、B、C、D四個(gè)等級(jí),并將收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中所給出的信息,解答下列各題:

(1)求八年一班共有多少人;

(2)補(bǔ)全折線統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中等極為“D”的部分所占圓心角的度數(shù)為________;

(4)若等級(jí)A為優(yōu)秀,求該班的優(yōu)秀率.

查看答案和解析>>

同步練習(xí)冊(cè)答案