【題目】如圖,A、B是函數(shù)y=的圖象上關(guān)于原點對稱的任意兩點,BC∥x軸,AC∥y軸,△ABC的面積記為S,則S=

【答案】4

【解析】試題連接OC,設(shè)ACx軸交于點D,BCy軸交于點E.首先由反比例函數(shù)y=的比例系數(shù)k的幾何意義,可知△AOD的面積等于|k|,再由A、B兩點關(guān)于原點對稱,BC∥x軸,AC∥y軸,可知S△AOC=2×S△AODS△ABC=2×S△AOC,從而求出結(jié)果.

解:如圖,連接OC,設(shè)ACx軸交于點D,BCy軸交于點E

∵A、B兩點關(guān)于原點對稱,BC∥x軸,AC∥y軸,

∴AC⊥x軸,AD=CDOA=OB,

∴S△COD=S△AOD=×2=1

∴S△AOC=2,

∴S△BOC=S△AOC=2

∴S△ABC=S△BOC+S△AOC=4

故答案為:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,∠AOB=90°,點A的坐標(biāo)為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過點B,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A與y軸相切于原點O,平行于x軸的直線交A于M、N兩點,若點M的坐標(biāo)是(﹣4,﹣2),則弦MN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請同學(xué)們思考如下問題:

請利用直尺和圓規(guī)四等分弧AB.

小亮的作法如下:

如圖,

(1)連接AB;

(2)作AB的垂直平分線CD交弧AB于點M.交AB于點T;

(3)分別作線段AT,線段BT的垂直平分線EF,GH,交弧AB于N,P兩點;

那么N,M,P三點把弧AB四等分.

老師問:“小亮的作法正確嗎?”

請回備:小亮的作法_____(“正確”或“不正確”)理由是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是弧AB所對弦AB上一動點,過點P作PC⊥AB交弧AB于點C,取AP中點D,連接CD.已知AB=6cm,設(shè)A,P兩點間的距離為xcm,C.D兩點間的距離為ycm.(當(dāng)點P與點A重合時,y的值為0;當(dāng)點P與點B重合時,y的值為3)

小凡根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小凡的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.2

3.2

3.4

3.3

3

(2)建立平面直角坐標(biāo)系,描出補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

(3)結(jié)合所畫出的函數(shù)圖象,解決問題:當(dāng)∠C=30°時,AP的長度約為多少cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,BCO的弦,B=60°,點OB內(nèi),點D上的動點,點MN,P分別是AD,DC,CB的中點.若O的半徑為2,則PN+MN的長度的最大值是( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標(biāo)系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點O′為中心的位似圖形,已知AC=3,若點A′的坐標(biāo)為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)圖5所示的程序,得到了yx的函數(shù)圖象,如圖5,若點M

y軸正半軸上任意一點,過點MPQx軸交圖象于點P、Q,連接OP、OQ,則以下結(jié)論:

x0時,y=

②△OPQ的面積為定值

x0時,yx的增大而增大

MQ=2PM

⑤∠POQ可以等于90°

其中正確結(jié)論是

A①②④B②④⑤C③④⑤D②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.

已知:CBAD,EDAD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB

查看答案和解析>>

同步練習(xí)冊答案