【題目】若時(shí)鐘由2點(diǎn)30分走到2點(diǎn)55分,問時(shí)針、分針各轉(zhuǎn)過多大的角度?

【答案】解:分針轉(zhuǎn)過的角度:(360°÷60)×(55﹣30)=150°
時(shí)針轉(zhuǎn)過的角度:(360°÷60÷12)×(55﹣30)=12.5°,
∴分針,時(shí)針各轉(zhuǎn)過150°、12.5°;
【解析】若時(shí)針由2點(diǎn)30分走到2點(diǎn)55分,共經(jīng)過25分鐘,時(shí)針一小時(shí)即60分鐘轉(zhuǎn)30°,一分鐘轉(zhuǎn)動(dòng)0.5°,分針一小時(shí)轉(zhuǎn)360°,一分鐘轉(zhuǎn)6°,據(jù)此作答.
【考點(diǎn)精析】本題主要考查了角的運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來表示才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)M(﹣2,3)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC,若三角形ABC的邊長(zhǎng)為1,AE=2,則CD的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過點(diǎn)(12),則它的圖象也一定經(jīng)過(  )

A.1,﹣2B.(﹣1,2C.(﹣2,1D.(﹣1,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖(1),若分別以△ABC的三邊AC,BC,AB為邊向三角形外側(cè)作正方形ACDE,BCFG和ABMN,則稱這三個(gè)正方形為△ABC的外展三葉正方形,其中任意兩個(gè)正方形為△ABC的外展雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2 . ①如圖(2),當(dāng)∠ACB=90°時(shí),求證:S1=S2
②如圖(3),當(dāng)∠ACB≠90°時(shí),S1與S2是否仍然相等,請(qǐng)說明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF,△AEN,△BGM的面積和為S,請(qǐng)利用圖(1)探究:當(dāng)∠ACB的度數(shù)發(fā)生變化時(shí),S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七邊形的內(nèi)角和是___________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A90°AB4,AC3,MAB上的動(dòng)點(diǎn)(不與A,B重合),過M點(diǎn)作MNBCAC于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令AMx

1)用含x的代數(shù)式表示NP的面積S;

2)當(dāng)x為何值時(shí),⊙O與直線BC相切?

3)在動(dòng)點(diǎn)M的運(yùn)動(dòng)過程中,記NP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達(dá)式,并求x為何值時(shí),y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=(x223,當(dāng)x2時(shí),yx的增大而_____(填增大減小).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=120°,OC在它的內(nèi)部,且把∠AOB分成1:3的兩個(gè)角,那么∠AOC的度數(shù)為( )
A.40°
B.40°或80°
C.30°
D.30°或90°

查看答案和解析>>

同步練習(xí)冊(cè)答案