【題目】先化簡,再求值:
(1)y(x+y)+(x+y)(x-y)-x2,其中x=-2,y=;
(2)(x+y)2-2x(x+y),其中x=3,y=2.
(3)(a+b)2-2a(b+1)-a2b÷b,其中a=-2,b=2.
【答案】(1)xy, -1;(2),-5;(3),8.
【解析】
(1)先利用單項式乘以多項式的運算法則、平方差公式把括號去掉,再合并同類項化為最簡,代入數(shù)值即可求解;(2)先利用完全平方公式、單項式乘以多項式的運算法則把括號展開,再合并同類項化為最簡,代入數(shù)值即可求解;(3)先利用完全平方公式、單項式乘以多項式的運算法則、單項式除以單項式的運算法則把括號去掉,再合并同類項化為最簡,代入數(shù)值即可求解.
(1)y(x+y)+(x+y)(x-y)-x2
=
=xy,
當x=-2,y=時,
原式=-1;
(2)(x+y)2-2x(x+y)
=
= ,
當x=3,y=2時,
原式=4-9=-5;
(3)(a+b)2-2a(b+1)-a2b÷b,
=
=,
當a=-2,b=2時,
原式=4+4=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩張完全相同的長方形紙片(長為12,寬為4)如圖疊放在一起,重疊部分為四邊形ABCD,則四邊形ABCD的周長最大值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D. 下列結論:①AD是∠BAC的平分線;②點D在AB的垂直平分線上;③∠ADC=60°;④。其中正確的結論有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個以點O為圓心的同心圓,
(1)如圖1,大圓的弦AB交小圓于C,D兩點,試判斷AC與BD的數(shù)量關系,并說明理由.
(2)如圖2,將大圓的弦AB向下平移使其為小圓的切線,切點為C,證明:AC=BC.
(3)在(2)的基礎上,已知AB=20cm,直接寫出圓環(huán)的面積.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1: 2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A、B兩地相距4800米,甲從A地出發(fā)步行到B地,20分鐘后乙從B地出發(fā)騎自行車到A地,設甲步行的時間為x分鐘,甲、乙兩人離A地的距離分別為米、米,、與x的函數(shù)關系圖象如圖所示,根據(jù)圖象解答下列問題:
(1)直接寫出y、y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求甲出發(fā)后多少分鐘兩人相遇,相遇時乙離A地多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為r,現(xiàn)要在圓中畫一個的菱形ABCD,
(1)當頂點D也落在圓上時,四邊形ABCD的形狀是___________(寫出一種四邊形的名稱),邊長為_____________(用含r的代數(shù)式表示) .
(2)當菱形有三個頂點落在圓上,且邊長為r時,請求出作為弦的那條對角線所對的圓周角的度數(shù).
(3)在(2)的前提下,當其中一條對角線長為3時,求該菱形的高.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com