【題目】某市在黨中央實施精準扶貧政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為w萬元.(毛利潤=銷售額﹣生產(chǎn)費用)

(1)請直接寫出yx以及zx之間的函數(shù)關系式;

(2)求wx之間的函數(shù)關系式;并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?

(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?

【答案】(1)y=x2,z=﹣x+30;(2)W==﹣x2+30x,年產(chǎn)量為75萬件時毛利潤最大,最大毛利潤為1125萬元;(3)今年最多可獲得1080萬元的毛利潤.

【解析】

(1)結合圖象,利用待定系數(shù)法求出yx以及zx之間的函數(shù)關系式即可;(2)根據(jù)毛利潤=銷售額﹣生產(chǎn)費用可得wx之間的函數(shù)關系式,再利用二次函數(shù)的性質求解即可;(3)令y=0,解方程求得x的值,根據(jù)圖象結合y的取值范圍,求得x的取值范圍,再由二次函數(shù)的性質即可解答.

(1)圖①可得函數(shù)經(jīng)過點(100,1000),

設拋物線的解析式為y=ax2(a≠0),

將點(100,1000)代入得:1000=10000a,

解得:a=,

yx之間的關系式為y=x2

圖②可得:函數(shù)經(jīng)過點(0,30)、(100,20),

z=kx+b,則,

解得:,

zx之間的關系式為z=﹣x+30;

(2)W=zx﹣y=﹣x2+30x﹣x2

=﹣x2+30x

=﹣(x2﹣150x)

=﹣(x﹣75)2+1125,

<0,

∴當x=75時,W有最大值1125,

∴年產(chǎn)量為75萬件時毛利潤最大,最大毛利潤為1125萬元;

(3)令y=360,得x2=360,

解得:x=±60(負值舍去),

由圖象可知,當0<y≤360時,0<x≤60,

W=﹣(x﹣75)2+1125的性質可知,

0<x≤60時,Wx的增大而增大,

故當x=60時,W有最大值1080,

答:今年最多可獲得毛利潤1080萬元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,BC=2,點P,Q均為AB邊上的動點,BECP,垂足為E,則QD+QE的最小值為(

A.2B.3C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線ymy軸交于點C,與x軸交于點A和點B(其中點Ay軸左側,點By軸右側).

1)若拋物線ym的對稱軸為直線x1,求拋物線的解析式;

2)如圖1,∠ACB90°,點P是拋物線ym上的一點,若SBCP,求點P的坐標;

3)如圖2,過點AADBC交拋物線于點D,若點D的縱坐標為﹣m,求直線AD的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系中的點和圖形,給出如下定義:若圖形上存在兩個點,使得是邊長為2的等邊三角形,則稱點是圖形的一個和諧點

已知直線軸交于點,與軸交于點的半徑為

1)若,在點中,直線的和諧點是___________;

2)若上恰好存在2個直線的和諧點,求的取值范圍;

3)若,線段上存在的和諧點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD中,MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB、DC(或它們的延長線)于點M、N

(1)MAN繞點A旋轉到BM=DN時(如圖1),請你直接寫出BM、DNMN的數(shù)量關系:__________

(2)當MAN繞點A旋轉到BMDN時(如圖2),(1)中的結論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.

(3)當MAN繞點A旋轉到如圖3的位置時,線段BM、DNMN之間又有怎樣的數(shù)量關系?請寫出直接寫出結論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的A,BC,D四個小區(qū)進行檢查,并且每個小區(qū)不重復檢查.

1)甲組抽到A小區(qū)的概率是多少;

2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠CAB120°,ABAC3,點E是三角形ABC 內(nèi)一點,且滿足則點E 在運動過程中所形成的圖形的長為

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】廣州融創(chuàng)樂園是國內(nèi)首個以南越文化、嶺南風格為主題的游樂園,自20196月開園以來受到了國內(nèi)外游客的熱捧.某旅游團組織一批游客游玩了樂園內(nèi)的四個網(wǎng)紅項目,“A.雙龍飛舞”、“B.飛躍廣東”、“C.云霄塔”、“D.怒?駶,并進行了“我最喜歡的一個項目”的投票評選活動,投票結果繪制成以下兩幅尚未完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答下列問題:

1)參與投票的游客總人數(shù)為   人;

2)扇形統(tǒng)計圖中B所對的圓心角度數(shù)為   度,并補全條形統(tǒng)計圖;

3)從投票給“雙龍飛舞“的3名男生和1名女生中隨機抽取2名了解情況,請你用列舉法求恰好抽到11女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】C為線段上一點,以為斜邊作等腰,連接,在外側,以為斜邊作等腰,連接

1)如圖1,當時:

①求證:

②判斷線段的數(shù)量關系,并證明;

2)如圖2,當時,的數(shù)量關系是否保持不變?

對于以上問題,小牧同學通過觀察、實驗,形成了解決該問題的幾種思路:

想法1:嘗試將點D為旋轉中心,過點D作線段垂線,交延長線于點G,連接;通過證明解決以上問題;

想法2:嘗試將點D為旋轉中心,過點D作線段垂線,垂足為點G,連接.通過證明解決以上問題;

想法3:嘗試利用四點共圓,過點D垂線段,連接,通過證明D、FB、E四點共圓,利用圓的相關知識解決以上問題.

請你參考上面的想法,證明(一種方法即可).

查看答案和解析>>

同步練習冊答案