【題目】在一快遞倉庫里堆放著若干個(gè)相同的正方體快遞件,管理員從正面看和從左面看這堆快遞如圖所示,則這正方體快遞件最多有_____件.
【答案】39
【解析】
由主視圖可得組合幾何體有4列,由左視圖可得組合幾何體有4行,可得最底層幾何體最多正方體的個(gè)數(shù)為:4×4=16;由主視圖和左視圖可得第二層最多正方體的個(gè)數(shù)為:4×4=16;由主視圖和左視圖可得第3層最多正方體的個(gè)數(shù)為:3×2=6;由主視圖和左視圖可得第4層最多正方體的個(gè)數(shù)為:1;相加可得所求.
由主視圖可得組合幾何體有4列,由左視圖可得組合幾何體有4行,
最底層幾何體最多正方體的個(gè)數(shù)為:4×4=16,
由主視圖和左視圖可得第二層最多正方體的個(gè)數(shù)為:4×4=16;
由主視圖和左視圖可得第3層最多正方體的個(gè)數(shù)為:3×2=6;
由主視圖和左視圖可得第4層最多正方體的個(gè)數(shù)為:1;
16+16+6+1=39(件).
故這正方體快遞件最多有39件.
故答案為:39.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.
(1)求拋物線的解析式;
(2)點(diǎn)D在y軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情景:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
(1)數(shù)學(xué)活動(dòng)小組經(jīng)過討論形成下列推理,請你補(bǔ)全推理依據(jù).
如圖2,過點(diǎn)P作PE∥AB,
∵PE∥AB(作圖知)
又∵AB∥CD,
∴PE∥CD.( )
∴∠A+∠APE=180°.
∠C+∠CPE=180°.( )
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
問題遷移:
(2)如圖3,AD∥BC,當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=α,∠BCP=β,求∠CPD與α、β之間有何數(shù)量關(guān)系?請說明理由.
問題解決:
(3)在(2)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請你直接寫出∠CPD與α、β之間的數(shù)量關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,B,P,A,C是圓上的點(diǎn),, PD⊥CD,CD交⊙O于A,若AC=AD,PD = ,sin∠PAD = ,則△PAB的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有3張紙牌,分別是紅桃3、紅桃4和黑桃5(簡稱紅3,紅4,黑5).把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.
(1)兩次抽得紙牌均為紅桃的概率;(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
(2)甲、乙兩人做游戲,現(xiàn)有兩種方案.A方案:若兩次抽得花色相同則甲勝,否則乙勝.B方案:若兩次抽得紙牌的數(shù)字和為奇數(shù)則甲勝,否則乙勝.請問甲選擇哪種方案勝率更高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方法感悟:
(1)如圖①,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長最。咳舸嬖,求出它周長的最小值;若不存在,請說明理由.
問題解決:
(2)如圖②,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個(gè)面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點(diǎn)H在矩形ABCD內(nèi)部或邊上時(shí),才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積,并寫出在以B為坐標(biāo)原點(diǎn),直線BC為x軸,直線BA為y軸的坐標(biāo)系中,點(diǎn)H的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某種產(chǎn)品展開圖,高為3cm.
(1)求這個(gè)產(chǎn)品的體積.
(2)請為廠家設(shè)計(jì)一種包裝紙箱,使每箱能裝5件這種產(chǎn)品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙的厚度不計(jì),紙箱的表面積盡可能小),求此長方體的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等腰直角三角形,∠ACB=90°,AB=,將AC邊所在直線向右平移,所得直線MN與BC邊的延長線相交于點(diǎn)M,點(diǎn)D在AC邊上,CD=CM,過點(diǎn)D的直線平分∠BDC,與BC交于點(diǎn)E,與直線MN交于點(diǎn)N,聯(lián)接AM.
(1)若CM=,則AM= ;
(2)如圖①,若點(diǎn)E是BM的中點(diǎn),求證:MN=AM;
(3)如圖②,若點(diǎn)N落在BA的延長線上,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為直線AD上一點(diǎn),OB是∠AOC內(nèi)部一條射線且滿足∠AOB與∠AOC互補(bǔ),OM、ON分別為∠AOC、∠AOB的平分線.
(1)∠COD與∠AOB相等嗎?請說明理由;
(2)若∠AOB=30°,試求∠AOM與∠MON的度數(shù);
(3)若∠MON=55°,試求∠AOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com