如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O(shè)為原點(diǎn),OC、OA所在直線(xiàn)為軸建立坐標(biāo)系.拋物線(xiàn)頂點(diǎn)為A,且經(jīng)過(guò)點(diǎn)C.點(diǎn)P在線(xiàn)段AO上由A向點(diǎn)O運(yùn)動(dòng),點(diǎn)O在線(xiàn)段OC上由C向點(diǎn)O運(yùn)動(dòng),QD⊥OC交BC于點(diǎn)D,OD所在直線(xiàn)與拋物線(xiàn)在第一象限交于點(diǎn)E.

(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)E′是E關(guān)于y軸的對(duì)稱(chēng)點(diǎn),點(diǎn)Q運(yùn)動(dòng)到何處時(shí),四邊形OEAE′是菱形?
(3)點(diǎn)P、Q分別以每秒2個(gè)單位和3個(gè)單位的速度同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),PB∥OD?

解:(1)∵A(0,2)為拋物線(xiàn)的頂點(diǎn),∴設(shè)y=ax2+2。
∵點(diǎn)C(3,0),在拋物線(xiàn)上,∴9a+2=0,解得:
∴拋物線(xiàn)的解析式為;。
(2)若要四邊形OEAE′是菱形,則只要AO與EE′互相垂直平分,
∴EE′經(jīng)過(guò)AO的中點(diǎn),∴點(diǎn)E縱坐標(biāo)為1,代入拋物線(xiàn)解析式得:,
解得:
∵點(diǎn)E在第一象限,∴點(diǎn)E為(,1)。
設(shè)直線(xiàn)BC的解析式為y=kx+b,
把B(1,2),C(3,0),代入得:,解得
∴BC的解析式為:。
設(shè)直線(xiàn)EO的解析式為y=ax,將E點(diǎn)代入,可得出EO的解析式為:。
,得:,
∴直線(xiàn)EO和直線(xiàn)BC的交點(diǎn)坐標(biāo)為:()。
∴Q點(diǎn)坐標(biāo)為:(,0)。
∴當(dāng)Q點(diǎn)坐標(biāo)為(,0)時(shí),四邊形OEAE′是菱形。
(3)設(shè)t為m秒時(shí),PB∥DO,又QD∥y軸,則有∠APB=∠AOE=∠ODQ,
又∵∠BAP=∠DQO,則有△APB∽△QDO。

由題意得:AB=1,AP=2m,QO=3﹣3m,
又∵點(diǎn)D在直線(xiàn)y=﹣x+3上,∴DQ=3m。
,解得:。
經(jīng)檢驗(yàn):是原分式方程的解。
∴當(dāng)t=秒時(shí),PB∥OD。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)(b,c是常數(shù),且c<0)與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).

(1)b=    ,點(diǎn)B的橫坐標(biāo)為    (上述結(jié)果均用含c的代數(shù)式表示);
(2)連接BC,過(guò)點(diǎn)A作直線(xiàn)AE∥BC,與拋物線(xiàn)交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),其坐標(biāo)為
(2,0),當(dāng)C,D,E三點(diǎn)在同一直線(xiàn)上時(shí),求拋物線(xiàn)的解析式;
(3)在(2)的條件下,點(diǎn)P是x軸下方的拋物線(xiàn)上的一動(dòng)點(diǎn),連接PB,PC,設(shè)所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有    個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖.在平面直角坐標(biāo)系中,邊長(zhǎng)為的正方形ABCD的頂點(diǎn)A、B在x軸上,連接OD、BD、△BOD的外心I在中線(xiàn)BF上,BF與AD交于點(diǎn)E.

(1)求證:△OAD≌△EAB;
(2)求過(guò)點(diǎn)O、E、B的拋物線(xiàn)所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線(xiàn)上是否存在點(diǎn)P,其關(guān)于直線(xiàn)BF的對(duì)稱(chēng)點(diǎn)在x軸上?若有,求出點(diǎn)P的坐標(biāo);
(4)連接OE,若點(diǎn)M是直線(xiàn)BF上的一動(dòng)點(diǎn),且△BMD與△OED相似,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點(diǎn).

(1)寫(xiě)出A、B兩點(diǎn)的坐標(biāo)(坐標(biāo)用m表示);
(2)若二次函數(shù)圖象的頂點(diǎn)P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)設(shè)以AB為直徑的⊙M與y軸交于C、D兩點(diǎn),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)的頂點(diǎn)為點(diǎn)D,并與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C.

(1)求點(diǎn)A、B、C、D的坐標(biāo);
(2)在y軸的正半軸上是否存在點(diǎn)P,使以點(diǎn)P、O、A為頂點(diǎn)的三角形與△AOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)取點(diǎn)E(,0)和點(diǎn)F(0,),直線(xiàn)l經(jīng)過(guò)E、F兩點(diǎn),點(diǎn)G是線(xiàn)段BD的中點(diǎn).
①點(diǎn)G是否在直線(xiàn)l上,請(qǐng)說(shuō)明理由;
②在拋物線(xiàn)上是否存在點(diǎn)M,使點(diǎn)M關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)在x軸上?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在坐標(biāo)系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線(xiàn)的圖象過(guò)C點(diǎn).

(1)求拋物線(xiàn)的解析式;
(2)平移該拋物線(xiàn)的對(duì)稱(chēng)軸所在直線(xiàn)l.當(dāng)l移動(dòng)到何處時(shí),恰好將△ABC的面積分為相等的兩部分?
(3)點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知:如圖①,直線(xiàn)與x軸、y軸分別交于A、B兩點(diǎn),兩動(dòng)點(diǎn)D、E分別從A、B兩點(diǎn)同時(shí)出發(fā)向O點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)到O點(diǎn)停止);對(duì)稱(chēng)軸過(guò)點(diǎn)A且頂點(diǎn)為M的拋物線(xiàn)(a<0)始終經(jīng)過(guò)點(diǎn)E,過(guò)E作EG∥OA交拋物線(xiàn)于點(diǎn)G,交AB于點(diǎn)F,連結(jié)DE、DF、AG、BG.設(shè)D、E的運(yùn)動(dòng)速度分別是1個(gè)單位長(zhǎng)度/秒和個(gè)單位長(zhǎng)度/秒,運(yùn)動(dòng)時(shí)間為t秒.

(1)用含t代數(shù)式分別表示BF、EF、AF的長(zhǎng);
(2)當(dāng)t為何值時(shí),四邊形ADEF是菱形?判斷此時(shí)△AFG與△AGB是否相似,并說(shuō)明理由;
(3)當(dāng)△ADF是直角三角形,且拋物線(xiàn)的頂點(diǎn)M恰好在BG上時(shí),求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知點(diǎn)A(0,4),B(2,0).

(1)求直線(xiàn)AB的函數(shù)解析式;
(2)已知點(diǎn)M是線(xiàn)段AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),以M為頂點(diǎn)的拋物線(xiàn)y=(x﹣m)2+n與線(xiàn)段OA交于點(diǎn)C.
①求線(xiàn)段AC的長(zhǎng);(用含m的式子表示)
②是否存在某一時(shí)刻,使得△ACM與△AMO相似?若存在,求出此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形ABCO的頂點(diǎn)A、C分別在y軸、x軸正半軸上,點(diǎn)P在AB上,PA=1,AO=2.經(jīng)過(guò)原點(diǎn)的拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=2.

(1)求出該拋物線(xiàn)的解析式.
(2)如圖1,將一塊兩直角邊足夠長(zhǎng)的三角板的直角頂點(diǎn)放在P點(diǎn)處,兩直角邊恰好分別經(jīng)過(guò)點(diǎn)O和C.現(xiàn)在利用圖2進(jìn)行如下探究:
①將三角板從圖1中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),兩直角邊分別交OA、OC于點(diǎn)E、F,當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止旋轉(zhuǎn).請(qǐng)你觀察、猜想,在這個(gè)過(guò)程中,的值是否發(fā)生變化?若發(fā)生變化,說(shuō)明理由;若不發(fā)生變化,求出的值.
②設(shè)(1)中的拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為D,頂點(diǎn)為M,在①的旋轉(zhuǎn)過(guò)程中,是否存在點(diǎn)F,使△DMF為等腰三角形?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案