【題目】已知兩點(diǎn)A(5,6)、B(7,2),先將線段AB向左平移一個(gè)單位,再以原點(diǎn)O為位似中心,在第一象限內(nèi)將其縮小為原來的得到線段CD,則點(diǎn)A的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為(  )
A.(2,3)
B.(3,1)
C.(2,1)
D.(3,3)

【答案】A
【解析】解:∵線段AB向左平移一個(gè)單位,
∴A點(diǎn)平移后的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(4,6),
∴點(diǎn)C的坐標(biāo)為(4×,6×),即(2,3).
故選A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解坐標(biāo)與圖形變化-平移(新圖形的每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這兩個(gè)點(diǎn)是對(duì)應(yīng)點(diǎn);連接各組對(duì)應(yīng)點(diǎn)的線段平行且相等),還要掌握位似變換(它們具有相似圖形的性質(zhì)外還有圖形的位置關(guān)系(每組對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過同一個(gè)點(diǎn)—位似中心))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),直線MN經(jīng)過點(diǎn)C,過點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且AC平分∠BAD.

(1)求證:直線MN是⊙O的切線;
(2)若CD=4,AC=5,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)某學(xué)期的四次數(shù)學(xué)測(cè)試成績(jī)(單位:分)如下表:

第一次

第二次

第三次

第四次

87

95

85

93

80

80

90

90

據(jù)上表計(jì)算,甲、乙兩名同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的方差分別為S2=17、S2=25,下列說法正確的是(
A.甲同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的平均數(shù)是89分
B.甲同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的中位數(shù)是90分
C.乙同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的眾數(shù)是80分
D.乙同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)較穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)分別為A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y軸上有一點(diǎn)P(0,2).作點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P1 , 作P1關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P2 , 作點(diǎn)P2關(guān)于點(diǎn)C的對(duì)稱點(diǎn)P3 , 作P3關(guān)于點(diǎn)D的對(duì)稱點(diǎn)P4 , 作點(diǎn)P4關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P5 , 作P5關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P6┅,按如此操作下去,則點(diǎn)P2011的坐標(biāo)為(
A.(0,2)
B.(2,0)
C.(0,﹣2)
D.(﹣2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個(gè)菱形(如圖2).記AB的長(zhǎng)度為a,BM的長(zhǎng)度為b.
(1)圖形①中∠B=°,圖形②中∠E=°;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風(fēng)箏一號(hào)”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號(hào)”. ①小明僅用“風(fēng)箏一號(hào)”紙片拼成一個(gè)邊長(zhǎng)為b的正十邊形,
需要這種紙片張;
②小明若用若干張“風(fēng)箏一號(hào)”紙片和“飛鏢一號(hào)”紙片拼成一個(gè)“大風(fēng)箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請(qǐng)你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知經(jīng)過點(diǎn)D(2,﹣)的拋物線y=(x+1)(x﹣3)(m為常數(shù),且m>0)與x軸交于點(diǎn)A、B(點(diǎn)A位于B的左側(cè)),與y軸交于點(diǎn)C.
(1)填空:m的值為   , 點(diǎn)A的坐標(biāo)為;
(2)根據(jù)下列描述,用尺規(guī)完成作圖(保留作圖痕跡,不寫作法):連接AD,在x軸上方作射線AE,使∠BAE=∠BAD,過點(diǎn)D作x軸的垂線交射線AE于點(diǎn)E;
(3)動(dòng)點(diǎn)M、N分別在射線AB、AE上,求ME+MN的最小值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖案中既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況,隨機(jī)抽取部分學(xué)生家長(zhǎng)進(jìn)行問卷調(diào)查,發(fā)出問卷140份,每位學(xué)生家長(zhǎng)1份,每份問卷僅表明一種態(tài)度,將回收的問卷進(jìn)行整理(假設(shè)回收的問卷都有效),并繪制了如圖兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問題:
(1)回收的問卷數(shù)為 份,“嚴(yán)加干涉”部分對(duì)應(yīng)扇形的圓心角度數(shù)為
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若將“稍加詢問”和“從來不管”視為“管理不嚴(yán)”,已知全校共1500名學(xué)生,請(qǐng)估計(jì)該校對(duì)孩子使用手機(jī)“管理不嚴(yán)”的家長(zhǎng)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)遷移我們知道,函數(shù)y=a(x﹣m)2+n(a≠0,m>0,n>0)的圖象是由二次函數(shù)y=ax2的圖象向右平移m個(gè)單位,再向上平移n個(gè)單位得到;類似地,函數(shù)y=+n(k≠0,m>0,n>0)的圖象是由反比例函數(shù)y=的圖象向右平移m個(gè)單位,再向上平移n個(gè)單位得到,其對(duì)稱中心坐標(biāo)為(m,n).

(1)理解應(yīng)用
函數(shù)y=+1的圖象可由函數(shù)y=的圖象向右平移 個(gè)單位,再向上平移 個(gè)單位得到,其對(duì)稱中心坐標(biāo)為
(2)靈活應(yīng)用如圖,在平面直角坐標(biāo)系xOy中,請(qǐng)根據(jù)所給的y=的圖象畫出函數(shù)y=﹣2的圖象,并根據(jù)該圖象指出,當(dāng)x在什么范圍內(nèi)變化時(shí),y≥﹣1?

(3)實(shí)際應(yīng)用
某老師對(duì)一位學(xué)生的學(xué)習(xí)情況進(jìn)行跟蹤研究,假設(shè)剛學(xué)完新知識(shí)時(shí)的記憶存留量為1,新知識(shí)學(xué)習(xí)后經(jīng)過的時(shí)間為x,發(fā)現(xiàn)該生的記憶存留量隨x變化的函數(shù)關(guān)系為y1=;若在x=t(t≥4)時(shí)進(jìn)行第一次復(fù)習(xí),發(fā)現(xiàn)他復(fù)習(xí)后的記憶存留量是復(fù)習(xí)前的2倍(復(fù)習(xí)的時(shí)間忽略不計(jì)),且復(fù)習(xí)后的記憶存留量隨x變化的函數(shù)關(guān)系為y2=,如果記憶存留量為時(shí)是復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”,且他第一次復(fù)習(xí)是在“最佳時(shí)機(jī)點(diǎn)”進(jìn)行的,那么當(dāng)x為何值時(shí),是他第二次復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”?

查看答案和解析>>

同步練習(xí)冊(cè)答案