【題目】(2017江蘇省宿遷市,第25題,10分)如圖,在平面直角坐標(biāo)系xOy中,拋物線交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將該拋物線位于x軸上方曲線記作M,將該拋物線位于x軸下方部分沿x軸翻折,翻折后所得曲線記作N,曲線N交y軸于點(diǎn)C,連接AC、BC.
(1)求曲線N所在拋物線相應(yīng)的函數(shù)表達(dá)式;
(2)求△ABC外接圓的半徑;
(3)點(diǎn)P為曲線M或曲線N上的一動(dòng)點(diǎn),點(diǎn)Q為x軸上的一個(gè)動(dòng)點(diǎn),若以點(diǎn)B,C,P,Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)Q的坐標(biāo).
【答案】(1);(2);(3)Q(4+,0)或(4﹣,0)或(5,0)或(2+,0)或(2﹣,0)或(1,0).
【解析】試題(1)由已知拋物線可求得A、B坐標(biāo)及頂點(diǎn)坐標(biāo),利用對(duì)稱性可求得C的坐標(biāo),利用待定系數(shù)法可求得曲線N的解析式;
(2)由外接圓的定義可知圓心即為線段BC與AB的垂直平分線的交點(diǎn),即直線y=x與拋物線對(duì)稱軸的交點(diǎn),可求得外接圓的圓心,再利用勾股定理可求得半徑的長(zhǎng);
(3)設(shè)Q(x,0),當(dāng)BC為平行四邊形的邊時(shí),則有BQ∥PC且BQ=PC,從而可用x表示出P點(diǎn)的坐標(biāo),代入拋物線解析式可得到x的方程,可求得Q點(diǎn)坐標(biāo),當(dāng)BC為平行四邊形的對(duì)角線時(shí),由B、C的坐標(biāo)可求得平行四邊形的對(duì)稱中心的坐標(biāo),從而可表示出P點(diǎn)坐標(biāo),代入拋物線解析式可得到關(guān)于x的方程,可求得P點(diǎn)坐標(biāo).
試題解析:(1)在中,令y=0可得x2﹣2x﹣3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0可得y=﹣3,又拋物線位于x軸下方部分沿x軸翻折后得到曲線N,∴C(0,3),設(shè)曲線N的解析式為,把A、B、C的坐標(biāo)代入可得:,解得:,∴曲線N所在拋物線相應(yīng)的函數(shù)表達(dá)式為;
(2)設(shè)△ABC外接圓的圓心為M,則點(diǎn)M為線段BC、線段AB垂直平分線的交點(diǎn),∵B(3,0),C(0,3),∴線段BC的垂直平分線的解析式為y=x,又線段AB的解析式為曲線N的對(duì)稱軸,即x=1,∴M(1,1),∴MB==,即△ABC外接圓的半徑為;
(3)設(shè)Q(t,0),則BQ=|t﹣3|.
①當(dāng)BC為平行四邊形的邊時(shí),如圖1,則有BQ∥PC,∴P點(diǎn)縱坐標(biāo)為3,
即過(guò)C點(diǎn)與x軸平行的直線與曲線M和曲線N的交點(diǎn)即為點(diǎn)P,x軸上對(duì)應(yīng)的即為點(diǎn)Q,當(dāng)點(diǎn)P在曲線M上時(shí),在中,令y=3可解得x=1+或x=1﹣,∴PC=1+或PC=﹣1.
當(dāng)x=1+時(shí),可知點(diǎn)Q在點(diǎn)B的右側(cè),可得BQ=t﹣3,∴t﹣3=1+,解得t=4+;
當(dāng)x=1﹣時(shí),可知點(diǎn)Q在點(diǎn)B的左側(cè),可得BQ=3﹣t,∴3﹣t=﹣1,解得t=4﹣,∴Q點(diǎn)坐標(biāo)為(4+,0)或(4﹣,0);
當(dāng)點(diǎn)P在曲線N上時(shí),在中,令y=3可求得x=0(舍去)或x=2,∴PC=2,此時(shí)Q點(diǎn)在B點(diǎn)的右側(cè),則BQ=t﹣3,∴t﹣3=2,解得t=5,∴Q點(diǎn)坐標(biāo)為(5,0);
②當(dāng)BC為平行四邊形的對(duì)角線時(shí),∵B(3,0),C(0,3),∴線段BC的中點(diǎn)為(,),設(shè)P(x,y),∴x+t=3,y+0=3,解得x=3﹣t,y=3,∴P(3﹣t,3),當(dāng)點(diǎn)P在曲線M上時(shí),則有3=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴Q點(diǎn)坐標(biāo)為(2+,0)或(2﹣,0);
當(dāng)點(diǎn)P在曲線N上時(shí),則有3=﹣(3﹣t)2+2(3﹣t)+3,解得t=3(Q、B重合,舍去)或t=1,∴Q點(diǎn)坐標(biāo)為(1,0);
綜上可知Q點(diǎn)的坐標(biāo)為(4+,0)或(4﹣,0)或(5,0)或(2+,0)或(2﹣,0)或(1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高公民法律意識(shí),大力推進(jìn)國(guó)家工作人員學(xué)法用法工作,今年年初某區(qū)組織本區(qū)900名教師參加“如法網(wǎng)”的法律知識(shí)考試,該區(qū)A學(xué)校參考教師的考試成績(jī)繪制成如下統(tǒng)計(jì)圖和統(tǒng)計(jì)表(滿分100分,考試分?jǐn)?shù)均為整數(shù),其中最低分76分)
(1)求A學(xué)校參加本次考試的教師人數(shù);
(2)若該區(qū)各學(xué)校的基本情況一致,試估計(jì)該區(qū)參考教師本次考試成績(jī)?cè)?/span>90.5分以下的人數(shù);
(3)求A學(xué)校參考教師本次考試成績(jī)85.5~96.5分之間的人數(shù)占該校參考人數(shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意一個(gè)三位數(shù),如果滿足各個(gè)數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個(gè)數(shù)為“互異數(shù)”,將一個(gè)“互異數(shù)”任意兩個(gè)數(shù)位上的數(shù)字對(duì)調(diào)后可以得到三個(gè)不同的新三位數(shù),把這三個(gè)新三位數(shù)的和與111的商記為.例如=123,對(duì)調(diào)百位與十位上的數(shù)字得到213,對(duì)調(diào)百位與個(gè)位上的數(shù)字得到321,對(duì)調(diào)十位與個(gè)位上的數(shù)字得到132,這三個(gè)新三位數(shù)的和為213+321+132=666,666÷111=6,所以=6.
(1)計(jì)算和的值,你發(fā)現(xiàn)了什么規(guī)律?請(qǐng)用自己的語(yǔ)言表達(dá);
(2)若=7,請(qǐng)直接寫(xiě)出的最小值;
(3)若,都是“互異數(shù)”,其中,(1≤≤9,1≤≤9,,都是正整數(shù)),當(dāng)+=16時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(3,1),B(-2,3),線段AB與y軸相交于點(diǎn)C.
(1)求△AOB的面積;
(2)求點(diǎn)C的坐標(biāo);
(3)請(qǐng)直接寫(xiě)出直線AB與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了維護(hù)海洋權(quán)益,新組建的國(guó)家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國(guó)籍的船只停在C處海域。如圖所示,AB=60海里,在B處測(cè)得C在北偏東45的方向上,A處測(cè)得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測(cè)得AD=120海里。
(1)分別求出A與C及B與C的距離AC,BC(結(jié)果保留根號(hào))
(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤(pán)查,途中有無(wú)觸礁的危險(xiǎn)?
(參考數(shù)據(jù):=1.41,=1.73,=2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2(m-1)x-m(m+2)=0
(1) 求證:此方程總有兩個(gè)不相等的實(shí)數(shù)根
(2) 若x=-2是此方程的一個(gè)根,求實(shí)數(shù)m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,兩條直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c.如圖②,現(xiàn)將與Rt△ABC全等的四個(gè)直角三角形拼成一個(gè)正方形EFMN.
(1)若Rt△ABC的兩直角邊之比均為2:3.現(xiàn)隨機(jī)向該圖形內(nèi)擲一枚小針,則針尖落在四個(gè)直角三角形區(qū)域的概率是多少?
(2)若正方形EFMN的邊長(zhǎng)為8,Rt△ABC的周長(zhǎng)為18,求Rt△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)一年多的精準(zhǔn)幫扶,小明家的網(wǎng)絡(luò)商店(簡(jiǎn)稱網(wǎng)店)將紅棗、小米等優(yōu)質(zhì)土特產(chǎn)迅速銷往全國(guó),小明家網(wǎng)店中紅棗和小米這兩種商品的相關(guān)信息如下表:
商品 | 紅棗 | 小米 |
規(guī)格 | 1kg/袋 | 2kg/袋 |
成本(元/袋) | 40 | 38 |
售價(jià)(元/袋) | 60 | 54 |
根據(jù)上表提供的信息,解答下列問(wèn)題:
(1)已知今年前五個(gè)月,小明家網(wǎng)店銷售上表中規(guī)格的紅棗和小米共3000kg,獲得利潤(rùn)4.2萬(wàn)元,求這前五個(gè)月小明家網(wǎng)店銷售這種規(guī)格的紅棗多少袋;
(2)根據(jù)之前的銷售情況,估計(jì)今年6月到10月這后五個(gè)月,小明家網(wǎng)店還能銷售上表中規(guī)格的紅棗和小米共2000kg,其中,這種規(guī)格的紅棗的銷售量不低于600kg.假設(shè)這后五個(gè)月,銷售這種規(guī)格的紅棗味x(kg),銷售這種規(guī)格的紅棗和小米獲得的總利潤(rùn)為y(元),求出y與x之間的函數(shù)關(guān)系式,并求出這后五個(gè)月,小明家網(wǎng)店銷售這種規(guī)格的紅棗和小米至少獲得總利潤(rùn)多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,現(xiàn)將一直角三角形放入圖中,其中,交于點(diǎn),交于點(diǎn).
(1)當(dāng)所放位置如圖一所示時(shí),則與的數(shù)量關(guān)系為 ;
(2)當(dāng)所放位置如圖二所示時(shí),試說(shuō)明:;
(3)在(2)的條件下,若與交于點(diǎn),且,,求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com