【題目】如圖⊙O是△ABC的外接圓,圓心O在這個三角形的高AD上,AB=10,BC=12,求⊙O的半徑.

【答案】解:如圖,連接OB.

∵AD是△ABC的高.

∴BD= BC=6

在Rt△ABD中,AD= = =8.

設(shè)圓的半徑是R.

則OD=8﹣R.

在Rt△OBD中,根據(jù)勾股定理可以得到:R2=36+(8﹣R)2

解得:R=


【解析】連接OB,根據(jù)垂經(jīng)定理求出BD的長,在Rt△ABD中由勾股定理求得AD=8,設(shè)圓的半徑是R,則OD=8-R,在Rt△OBD中由勾股定理可求得R的值.解答此題的關(guān)鍵是作出輔助線OB.注意:垂徑定理和勾股定理常常在一起中應(yīng)用.
【考點精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某機械廠甲、乙兩個生產(chǎn)車間承擔(dān)生產(chǎn)同一種零件的任務(wù),甲、乙兩車間共有人,甲車間平均每人每天生產(chǎn)零件個.乙車間平均每人每天生產(chǎn)零件個,甲車間每天生產(chǎn)零件總數(shù)與乙車間每天生產(chǎn)零件總數(shù)之和為個.

1)求甲、乙兩車間各有多少人?

2)該機械廠改進了生產(chǎn)技術(shù).在甲、乙兩車間總?cè)藬?shù)不變的情況下,從甲車間調(diào)出一部分人到乙車間.調(diào)整后甲車間平均每人每天生產(chǎn)零件個,乙車間平均每人每天生產(chǎn)零件個,若甲車間每天生產(chǎn)零件總數(shù)與乙車間每天生產(chǎn)零件總數(shù)之和不少于個,求從甲車間最多調(diào)出多少人到乙車間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板按如圖所示的方式疊放在一起,兩直角頂點重合于點O.

(1)求∠AOD+BOC的度數(shù);

(2)當(dāng)AB的中點E恰好落在CD的中垂線上時,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),拋物線y=x2﹣2x+k與x軸交于A,B兩點,與y軸交于點C(0,﹣3).

(1)k= , 點A的坐標(biāo)為 , 點B的坐標(biāo)為


(2)設(shè)拋物線y=x2﹣2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標(biāo);若不存在,請說明理由;
(4)在拋物線y=x2﹣2x+k上求出點Q坐標(biāo),使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,,,,,……

(1)請你據(jù)此推測出的個位數(shù)字是幾?

(2)利用上面的結(jié)論,求的個位數(shù)字.

(3)的個位數(shù)字又是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人去水果批發(fā)市場采購獼猴桃,他看中了A、B兩家獼猴桃.這兩家獼猴桃品質(zhì)一樣,零售價都為6元/千克,批發(fā)價各不相同,

A家規(guī)定:批發(fā)數(shù)量不超過1000千克,按零售價的92%優(yōu)惠;批發(fā)數(shù)量不超過2000千克,按零售價的90%優(yōu)惠;超過2000千克的按零售價的88%優(yōu)惠.

B家的規(guī)定如下表:

數(shù)量范圍

(千克)

0500

500以上~1500

1500以上~2500

2500以上

價格(元)

零售價的95%

零售價的85%

零售價的75%

零售價的70%

1)如果他批發(fā)600千克獼猴桃,則他在A 、B兩家批發(fā)分別需要多少元?

2)如果他批發(fā)x千克獼猴桃(1500x2000),請你分別用含x的代數(shù)式表示他在AB兩家批發(fā)所需的費用;

3)現(xiàn)在他要批發(fā)1800千克獼猴桃,你能幫助他選擇在哪家批發(fā)更優(yōu)惠嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某紙品加工廠利用邊角料裁出正方形和長方形兩種硬紙片,長方形的寬與正方形的邊長相等(如圖2),再將它們制作成甲乙兩種無蓋的長方體小盒(如圖1).現(xiàn)將300張長方形硬紙片和150張正方形硬紙片全部用于制作這兩種小盒,可以做成甲乙兩種小盒各多少個?(注:圖1中向上的一面無蓋)

查看答案和解析>>

同步練習(xí)冊答案