【題目】如圖所示的是常見的工具“人字梯”,量得“人字梯”的一側(cè)OC=OD=2.5米,
(1)若CD=1.4米,求梯子頂端O離地面的高度;
(2)《建筑施工高處作業(yè)安全技術(shù)規(guī)范》規(guī)定:使用“人字梯”時(shí),上部夾角(∠AOB)以35°~45°為宜,鉸鏈必須牢固,并應(yīng)有可靠的拉撐措施.如圖,小明在人字梯的一側(cè)A、B處系上一根繩子確保用梯安全,他測得OA=OB=2米,在A、B處打結(jié)各需要0.4米的繩子,請(qǐng)你幫小明計(jì)算一下,他需要的繩子的長度應(yīng)該在什么范圍內(nèi).(結(jié)果精確到0.1米,參考數(shù)據(jù):sin17.5°≈0.30,cos17.5°≈0.95,tan17. °5≈0.32,sin22.5°≈0.38,cos22.5°≈0.92,tan22.5°≈0.41)
【答案】(1) 2.4米; (2)他所需的繩子的長度應(yīng)該在2.0米到2.3米之間.
【解析】分析:畫出與實(shí)際問題對(duì)應(yīng)的圖形,(1)作OE⊥CD于點(diǎn)E,用勾股定理求OE;(2)作OF⊥AB于點(diǎn)F,分別求出當(dāng)∠AOE=35°和45°時(shí)的AB的長.
詳解:(1)如圖1,作OE⊥CD于點(diǎn)E,
△OCD中,∵OC=OD,且OE⊥CD.CE=CD=0.7,
所以OE==2.4米;
(2)如圖2,作OF⊥AB于點(diǎn)F,
△OAB中,OA=OB,且OF⊥AB,
所以∠AOF=∠BOF=∠AOB,AF=FB=AB.
Rt△OAF中,sin∠AOF=,
∴AF=OA·sin∠AOF,
由題意知35°≤∠AOB≤45°,
當(dāng)∠AOF=17.5°時(shí),AF=OA·sin∠AOF=2×sin17.5°≈0.60米,
此時(shí),AB≈1.20米,所需的繩子約為2.0米,
當(dāng)∠AOF=22.5°時(shí),AF=OA·sin∠AOF=2×sin22.5°≈0.76米,
此時(shí),AB≈1.52米,所需的繩子約為2.3米,
所以,他所需的繩子的長度應(yīng)該在2.0米到2.3米之間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P為線段AB上任意一點(diǎn),延長PD到E,使DE=2PD,再以PE、PC為邊作平行四邊形PCQE,求對(duì)角線PQ的最小值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)DE=AE時(shí),四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是( 。
A.②③B.②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師計(jì)劃組織朋友去晉西北游覽兩日,經(jīng)了解,現(xiàn)有甲、乙兩家旅行社比較合適,報(bào)價(jià)均為每人元,且提供的服務(wù)完全相同.針對(duì)組團(tuán)兩日游的游客,甲旅行社表示,每人都按八五折收費(fèi);乙旅行社表示,若人數(shù)不超過人,每人都按九折收費(fèi),若超過人,則其中人按九折收費(fèi),超出人數(shù)每人按七五折收費(fèi).假設(shè)組團(tuán)參加兩日游的人數(shù)為人.
(1)請(qǐng)分別列式表示甲、乙兩家旅行社收取組團(tuán)兩日游的總費(fèi)用;
(2)若王老師組團(tuán)參加兩日游的人數(shù)共有人,請(qǐng)你通過計(jì)算,在甲、乙兩家旅行社中,幫助王老師選擇收取總費(fèi)用較少的一家.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,已知AB=6,BC=9, .對(duì)角線AC、BD交于點(diǎn)O.動(dòng)點(diǎn)P在邊AB上,⊙P經(jīng)過點(diǎn)B,交線段PA于點(diǎn)E.設(shè)BP= x.
(1)求AC的長;
(2)設(shè)⊙O的半徑為y,當(dāng)⊙P與⊙O外切時(shí),求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(3)如果AC是⊙O的直徑,⊙O經(jīng)過點(diǎn)E,求⊙O與⊙P的圓心距OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)有50個(gè)奇數(shù)排成的數(shù)陣,用如圖所示的框去框住四個(gè)數(shù),并求出這四個(gè)數(shù)的和,在下列給出的備選答案中,有可能是這四個(gè)數(shù)的和的是( 。
A. 114 B. 122 C. 220 D. 84
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷量的相關(guān)信息如下表:
時(shí)間x(天) | 1≤x<50 | 50≤x≤90 |
售價(jià)(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品每天的利潤為y元。
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤最大?最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于4800元?請(qǐng)直接寫出結(jié)果。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車運(yùn)輸公司根據(jù)實(shí)際需要計(jì)劃購買大、中型兩種客車共20輛,已知大型客車每輛62萬元,中型客車每輛40萬元,設(shè)購買大型客車x(輛),購車總費(fèi)用為y(萬元).
(1)求y與x的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)若購買中型客車的數(shù)量少于大型客車的數(shù)量,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com