【題目】如圖所示,A是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)A作AB⊥y軸于點(diǎn)B,點(diǎn)P在x軸上,△ABP的面積為4,則這個(gè)反比例函數(shù)的解析式為_____.
【答案】y=﹣.
【解析】
連接OA,設(shè)反比例函數(shù)的解析式為y=(k≠0),根據(jù)△ABO和△ABP同底等高,利用反比例函數(shù)系數(shù)k的幾何意義結(jié)合△ABP的面積為4即可求出k值,再根據(jù)反比例函數(shù)在第二象限有圖象,由此即可確定k值,從而得出結(jié)論.
連接OA,如圖所示.
設(shè)反比例函數(shù)的解析式為y=(k≠0).
∵AB⊥y軸,點(diǎn)P在x軸上,∴△ABO和△ABP同底等高,∴S△ABO=S△ABP=|k|=4,
解得:k=±8.
∵反比例函數(shù)在第二象限有圖象,∴k=﹣8,∴反比例函數(shù)的解析式為y=﹣.
故答案為:y=﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點(diǎn),且DE=DF,連接BF,CE.下列說法:①△BDF≌△CDE;②CE=BF; ③BF∥CE;④△ABD和△ACD周長相等.其中正確的有___________(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為等邊三角形內(nèi)一點(diǎn),連接,,,以為一邊作,且,連接、.
(1)判斷與的大小關(guān)系并證明;
(2)若,,,判斷的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點(diǎn)E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=8,CE=2時(shí),求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過頂點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n,),過點(diǎn)E的直線l交x軸于點(diǎn)F,交y軸于點(diǎn)G(0,-2),則點(diǎn)F的坐標(biāo)是( )
A. (,0)B. (,0)C. (,0)D. (,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A. 如圖1,展開后測得∠1=∠2
B. 如圖2,展開后測得∠1=∠2且∠3=∠4
C. 如圖3,測得∠1=∠2
D. 如圖4,展開后再沿CD折疊,兩條折痕的交點(diǎn)為O,測得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】灞橋區(qū)教育局為了了解七年級學(xué)生參加社會實(shí)踐活動情況,隨機(jī)抽取了鐵一中濱河學(xué)部分七年級學(xué)生2016﹣2017學(xué)年第一學(xué)期參加實(shí)踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)圖中提供的信息,回答下列問題:
(1)a= %,并補(bǔ)全條形圖.
(2)在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)如果該區(qū)共有七年級學(xué)生約9000人,請你估計(jì)活動時(shí)間不少于6天的學(xué)生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖示,下列結(jié)論:
(1)b<0;(2)c>0;(3)b2﹣4ac>0; (4)a﹣b+c<0,
(5)2a+b<0; (6)abc>0;其中正確的是_____;(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,DE平分∠ADC交BC邊于點(diǎn)E,P為DE上的一點(diǎn)(PE<PD),PM⊥PD,PM交AD邊于點(diǎn)M.
(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PF⊥PN,且點(diǎn)N位于AD邊上,如圖1所示.
求證:①PN=PF;②DF+DN=DP;
(2)如圖2所示,當(dāng)點(diǎn)F在CD邊的延長線上時(shí),仍然滿足PF⊥PN,此時(shí)點(diǎn)N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com