【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)C點(diǎn)的直線(xiàn)互相垂直,垂足為D,且AC平分∠DAB.
(1)求證:DC為⊙O的切線(xiàn);
(2)若⊙O的半徑為5,BC=6,求CD的長(zhǎng).
【答案】
(1)證明:連接OC.如圖1所示
∵AC平分∠DAB,
∴∠DAC=∠OAC,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OCA,
∴DA∥OC,
∵AD⊥DC,
∴∠ADC=90°,
∴∠OCD=90°,
即OC⊥DC,
∵OC為半徑,
∴DC為⊙O的切線(xiàn).
(2)解:連接BC,如圖2所示:
∵AB是⊙O的直徑,
∴AB=10,∠ACB=90°=∠ADC,
∴AC= =8,
又∵∠DAC=∠OAC,
∴△ACD∽△ABC,
∴ ,即 ,
解得:CD=4.8.
【解析】(1)根據(jù)切線(xiàn)的判定方法只要求出∠OCD=90°即可;由AC平∠DAB,得到∠DAC=∠OAC,由OA=OC,得到∠OCA=∠OAC,∠DAC=∠OCA,DA∥OC,因?yàn)锳D⊥DC,所以∠ADC=90°,∠OCD=90°,即OC⊥DC,由OC為半徑,所以DC為⊙O的切線(xiàn);(2)由AB是⊙O的直徑,根據(jù)勾股定理求出AC的值,又兩角相等兩三角形相似,得出△ACD∽△ABC,寫(xiě)出比例式求出CD的值.
【考點(diǎn)精析】本題主要考查了切線(xiàn)的判定定理的相關(guān)知識(shí)點(diǎn),需要掌握切線(xiàn)的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列文字與例題,并解答。
將一個(gè)多項(xiàng)式分組進(jìn)行因式分解后,可用提公因式法或公式法繼續(xù)分解的方法稱(chēng)作分組分解法。例如:以下式子的分解因式的方法叉稱(chēng)為分組分解法。
(1)試用“分組分解法”分解因式:
(2)已知四個(gè)實(shí)數(shù)a,b,c,d滿(mǎn)足。并且,,,同時(shí)成立。
①當(dāng)k=1時(shí),求a+c的值;
②當(dāng)k≠0時(shí),用含a的代數(shù)式分別表示b、c、d。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為培育青少年科技創(chuàng)新能力,舉辦了動(dòng)漫制作活動(dòng),小明設(shè)計(jì)了點(diǎn)做圓周運(yùn)動(dòng)的一個(gè)雛形,如圖所示,甲、乙兩點(diǎn)分別從直徑的兩端點(diǎn)A、B以順時(shí)針、逆時(shí)針的方向同時(shí)沿圓周運(yùn)動(dòng),甲運(yùn)動(dòng)的路程l(cm)與時(shí)間t(s)滿(mǎn)足關(guān)系:(t≥0),乙以4cm/s的速度勻速運(yùn)動(dòng),半圓的長(zhǎng)度為21cm.
(1)甲運(yùn)動(dòng)4s后的路程是多少?
(2)甲、乙從開(kāi)始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
(3)甲、乙從開(kāi)始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:給定兩個(gè)不等式組和,若不等式組的任意一個(gè)解,都是不等式組的一個(gè)解,則稱(chēng)不等式組為不等式組的“子集”例如:不等式組:是:的“子集”.
(1)若不等式組:,,其中不等式組_________是不等式組的“子集”(填或);
(2)若關(guān)于的不等式組是不等式組的“子集”,則的取值范圍是________;
(3)已知為互不相等的整數(shù),其中,,下列三個(gè)不等式組:,,滿(mǎn)足:是的“子集”且是的“子集”,則的值為__________;
(4)已知不等式組有解,且是不等式組的“子集”,請(qǐng)寫(xiě)出,滿(mǎn)足的條件:________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC和△ADE均為等邊三角形,BD、CE交于點(diǎn)F.
(1)求證:BD=CE;(2)求銳角∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各計(jì)算題中,結(jié)果是零的是( )
A.(+3)﹣|﹣3|
B.|+3|+|﹣3|
C.(﹣3)﹣3
D. (﹣ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD與正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),則位似中心的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為a的正方形,點(diǎn)G,E分別是邊AB,BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平分線(xiàn)CF于點(diǎn)F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com