【題目】如圖,已知:點B、E、F、C在同一直線上,∠A=∠D,BE=CF,且AB∥CD.求證:AF∥ED

證明:∵BE=FC

∴BE+EF=FC+EF____________________________

即:___________

∵AB∥CD

∴∠B=∠C_________________________

在△ABF和△DCE中,

∠A=∠D, ∠B=∠C, BF=CE

∴△ABF≌△DCE________

∴∠AFB=∠DEC_________________________________

∴AF∥ED__________________________________

【答案】等式的性質(zhì)BF=CE兩直線平行內(nèi)錯角相等AAS全等三角形對應(yīng)角相等內(nèi)錯角相等兩直線平行

【解析】

BECF,利用等式的性質(zhì)得到BFCE ,再由ABDC平行得到兩對內(nèi)錯角相等,利用AAS得到△ABF與△DCE全等,利用全等三角形的對應(yīng)角相等得到一對內(nèi)錯角相等利用內(nèi)錯角相等兩直線平行即可得證.

證明:∵BE=FC

∴BE+EF=FC+EF( 等式的性質(zhì) 

即: BF=CE 

∵AB∥CD

∴∠B=∠C( 兩直線平行內(nèi)錯角相等 

∠A=∠D

∠B=∠C

在△ABF和△DCE中,有

BF=CE

∴△ABF≌△DCE( AAS 

∴∠AFB=∠DEC( 全等三角形對應(yīng)角相等 

∴AF∥ED( 內(nèi)錯角相等兩直線平行 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展英語演講比賽活動,八年級(1),(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示,

1)根據(jù)圖示填寫下表:

班級

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

八(1

______

85

______

八(2

85

______

100

2)計算兩班復(fù)賽成績的方差并說明哪版的成績比較穩(wěn)定.(方差公式:S2=]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:菱形 ABCD,點 E 在線段 BC 上,連接 DE,點 F 在線段 AB 上,連接 CF、DF, CF DE 交于點 G,將菱形 ABCD 沿 DF 翻折,點 A 恰好落在點 G 上.

1)求證:CD=CF;

2)設(shè)CED= xDCF= y,求 y x 的函數(shù)關(guān)系式;(不要求寫出自變量的取值范圍)

3)在(2)的條件下,當 x=45°時,以 CD 為底邊作等腰CDK,頂角頂點 K 在菱形 ABCD的內(nèi)部,連接 GK,若 GKCDCD=4 時,求線段 KG 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCADBC邊上的高,AEBC邊上的中線C=45°,sin B=AD=1.

(1)BC的長;

(2)tan DAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(-2,n)在拋物線y=x2+bx+c.

(1)b=1,c=3,n的值;

(2)若此拋物線經(jīng)過點B(4,n),且二次函數(shù)y=x2+bx+c的最小值是-4,請畫出點P(x-1,x2+bx+c)的縱坐標隨橫坐標變化的圖象,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明口袋中裝有5個白球和6個紅球,這些球除顏色外完全相同,充分攪勻后隨機摸球.

1)如果先摸出一白球,將這個白球放回,再摸出一球,那么它是白球的概率是多少?

2)如果先摸出一白球,這個白球不放回,再摸出一球,那么它是白球的概率是多少?

3)如果先摸出一紅球,這個紅球不放回,再摸出一球,那么它是白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20171111日,張杰參加了某網(wǎng)點的翻牌抽獎活動.如圖所示,4張牌上分別寫有對應(yīng)獎品的價值為10元,15元,20元和謝謝惠顧的字樣.

⑴如果隨機翻1張牌,那么抽中有獎的概率為 ,抽中15元及以上獎品的概率為 .

⑵如果隨機翻2張牌,且第一次翻過的牌不再參加下次翻牌,用畫樹狀圖或列表法列出抽獎的所有等可能性情況,并求出獲獎品總值不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD,AB3,AD4,將紙片折疊,使點B落在邊CD上的B折痕為AE.在折痕AE上存在一點P到邊CD的距離與到點B的距離相等,則此相等距離為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖,則下列敘述正確的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為yax2c

查看答案和解析>>

同步練習(xí)冊答案