【題目】如圖,函數(shù)y=的圖象與雙曲線y=(k≠0,x>0)相交于點(diǎn)A(3,m)和點(diǎn)B.
(1)求雙曲線的解析式及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P在y軸上,連接PA,PB,求當(dāng)PA+PB的值最小時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)雙曲線的解析式為y=,點(diǎn)B的坐標(biāo)為(6,3);點(diǎn)P的坐標(biāo)為(0,5).
【解析】分析:(1)由一次函數(shù)的解析式可得點(diǎn)A的坐標(biāo),從而求出反比例函數(shù)的解析式,解由一次函數(shù)與反比例函數(shù)的解析式組成的方程組可求點(diǎn)B的坐標(biāo);(2)作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)A′,連接A′B,直線A′B與y的交點(diǎn)即為點(diǎn)P,用待定系數(shù)法求直線A′B的解析式后即可求點(diǎn)P的坐標(biāo).
詳解:(1)把A(3,m)代入y=2x,可得m=2×3=6,∴A(3,6),
把A(3,6)代入y=,可得k=3×6=18,
∴雙曲線的解析式為y=;
當(dāng)x>3時(shí),解方程組,可得或(舍去)
∴點(diǎn)B的坐標(biāo)為(6,3).
(2)如圖所示,作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)A′(-3,6),連接A′P,則A′P=AP,
∴PA+PB=A′P+BP≥A′B
當(dāng)A′,P,B三點(diǎn)共線時(shí),PA+PB的最小值等于A′B的長.
設(shè)A′B的解析式為y=ax+b,
把A′(-3,6),B(6,3)代入,可得,解得.
∴A′B的解析式為y=x+5,
令x=0,則y=5,
∴點(diǎn)P的坐標(biāo)為(0,5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并解答其后的問題:
我國古代南宋數(shù)學(xué)家秦九韶在其所著書《數(shù)學(xué)九章》中,利用“三斜求積術(shù)”十分巧妙的解決了已知三角形三邊求其面積的問題,這與西方著名的“海倫公式”是完全等價(jià)的.我們也稱這個(gè)公式為“海倫秦九韶公式”,該公式是:設(shè)△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,△ABC的面積為S=.
(1)(舉例應(yīng)用)已知△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,且a=4,b=5,c=7,則△ABC的面積為 ;
(2)(實(shí)際應(yīng)用)有一塊四邊形的草地如圖所示,現(xiàn)測(cè)得AB=(2+4)m,BC=5m,CD=7m,AD=4m,∠A=60°,求該塊草地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年4月15日至5月15日,某市約8萬名初三畢業(yè)生參加了中考體育測(cè)試,為了了解今年初三畢業(yè)生的體育成績,從某校隨機(jī)抽取了60名學(xué)生的測(cè)試成績,根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的得分按優(yōu)秀、良好、及格、不及格(分別用A、B、C、D表示)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并繪制成下面的扇形圖和統(tǒng)計(jì)表:
等級(jí) | 成績(分) | 頻數(shù)(人數(shù)) | 頻率 |
A | 27~30 | 24 | 0.4 |
B | 23~26 | m | x |
C | 19~22 | n | y |
D | 18及18以下 | 3 | 0.05 |
合計(jì) | 60 | 1.00 |
請(qǐng)你根據(jù)以上圖表提供的信息,解答下列問題:
(1)m= ,n= ,x= ,y= ;
(2)在扇形圖中,B等級(jí)所對(duì)應(yīng)的圓心角是 度;
(3)請(qǐng)你估計(jì)某市這8萬名初三畢業(yè)生成績等級(jí)達(dá)到優(yōu)秀和良好的大約有多少人?
(4)初三(1)班的甲、乙、丙、丁四人的成績均為A,現(xiàn)決定從這四名同學(xué)中選兩名參加學(xué)校組織的體育活動(dòng),直接寫出恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設(shè)這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個(gè)行駛過程中,甲、乙兩車離開A城的距離y(km)與行駛的時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.
(1)求乙車離開A城的距離y關(guān)于t的函數(shù)解析式;
(2)求乙車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在家中利用物理知識(shí)稱量某個(gè)品牌純牛奶的凈含量,稱得六盒純牛奶的含量分別為:248mL,250mL,249mL,251mL,249mL,253mL,對(duì)于這組數(shù)據(jù),下列說法正確的是( ).
A.平均數(shù)為251mL B.中位數(shù)為249mL
C.眾數(shù)為250mL D.方差為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)甲、乙兩班舉行電腦漢字輸入比賽,兩個(gè)班能參加比賽的學(xué)生每分鐘輸入漢字的個(gè)數(shù),經(jīng)統(tǒng)計(jì)和計(jì)算后結(jié)果如下表:
有一位同學(xué)根據(jù)上面表格得出如下結(jié)論:
①甲、乙兩班學(xué)生的平均水平相同;②乙班優(yōu)秀人數(shù)比甲班優(yōu)秀人數(shù)多(每分鐘輸入漢字達(dá)150個(gè)以上為優(yōu)秀);③甲班學(xué)生比賽成績的波動(dòng)比乙班學(xué)生比賽成績的波動(dòng)大.
上述結(jié)論正確的是_______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ADF和△BCE中,∠A=∠B,點(diǎn)D,E,F(xiàn),C在同一直線上,有如下三個(gè)關(guān)系式:①.AD=BC;②.DE=CF;③.BE∥AF.
⑴.請(qǐng)用其中兩個(gè)關(guān)系式作為條件,另一個(gè)作為結(jié)論,寫出所有正確的結(jié)論.
⑵.選擇(1)中你寫出的一個(gè)正確結(jié)論,說明它正確的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P、Q是邊長為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,下列結(jié)論錯(cuò)誤的是( )
A.BP=CM
B.△ABQ≌△CAP
C.∠CMQ的度數(shù)不變,始終等于60°
D.當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com