【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F

1)求證:CF是⊙O的切線;

2)若∠F=30°,EB=4,求圖中陰影部分的面積(結(jié)果保留根號和π

【答案】1)證明見解析;2S=4

【解析】試題(1) 根據(jù)兩直線平行,同位角相等,內(nèi)錯角相等,證明 ,利用全等三角形“SAS”判定定理,證明 ,得到ODCD,所以CFO的切線.

2 利用三角函數(shù)和角度的關(guān)系計算出OA,OC的長度和∠DOA的度數(shù),分別求出四邊形OACD和扇形OAD的面積,相減即可得到陰影部分的面積.

試題解析:1)證明:如圖連接OD

∵四邊形OBEC是平行四邊形,

OCBE,

∴∠AOC=OBE,COD=ODB

OB=OD,

∴∠OBD=ODB,

∴∠DOC=AOC

在△COD和△COA中,

,

∴△COD≌△COA,

∴∠CAO=CDO=90°

CFOD,

CF是⊙O的切線.

2)解:∵∠F=30°,ODF=90°,

∴∠AOD=120°

OD=OB,

∵∠DOC=AOC=60°

EB=4,OD=2CD=,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的外角∠ACD的平分線CP與∠ABC平分線BP交于點P,若∠BPC=40°,則∠CAP的度數(shù)是(

A. 30° B. 40°; C. 50°; D. 60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)試說明△ABC是等腰三角形;

2)已知SABC40cm2,如圖2,動點M從點B出發(fā)以每秒2cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以每秒1cm速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),

①若△DMN的邊與BC平行,求t的值;

②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

1 2 備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是( 。

A. 9 B. 10 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級學(xué)生開展踢毽子比賽活動,每班派5名學(xué)生參加,按團體總分多少排列名次,在規(guī)定時間內(nèi)每人踢100個以上(含100個)為優(yōu)秀.下表是成績最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個):

1

2

3

4

5

總成績

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

經(jīng)統(tǒng)計發(fā)現(xiàn)兩班總成績相等,只好將數(shù)據(jù)中的其他信息作為參考.根據(jù)要求回答下列問題:

1)計算兩班的優(yōu)秀率;

2)求兩班比賽數(shù)據(jù)的中位數(shù);

3)求兩班比賽數(shù)據(jù)的方差;

4)根據(jù)以上三條信息,你認為應(yīng)該把冠軍獎狀發(fā)給哪一個班級?簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時,求BAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在勾股章中有這樣一個問題:今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?

用今天的話說,大意是:如圖,是一座邊長為200步(是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PAPB的值稱為點P關(guān)于⊙O冪值

(1)O的半徑為6,OP=4.

①如圖1,若點P恰為弦AB的中點,則點P關(guān)于⊙O冪值_____;

②判斷當(dāng)弦AB的位置改變時,點P關(guān)于⊙O冪值是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關(guān)于⊙0冪值的取值范圍;

(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關(guān)于⊙O冪值冪值的取值范圍_____;

(3)在平面直角坐標(biāo)系xOy中,C(1,0),C的半徑為3,若在直線y=x+b上存在點P,使得點P關(guān)于⊙C冪值6,請直接寫出b的取值范圍_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011山東濟南,22,3分)如圖1△ABC中,∠C=90°,∠ABC=30°,AC=m,延長CB至點D,使BD=AB

∠D的度數(shù);

tan75°的值.

2)如圖2,點M的坐標(biāo)為(2,0),直線MNy軸的正半軸交于點N,∠OMN=75°.求直線MN的函數(shù)表達式.

查看答案和解析>>

同步練習(xí)冊答案