【題目】如圖,在矩形ABCD,AB=6cm,BC=12cm,P從點A出發(fā),沿AB邊向點B1cm/s的速度移動,同時點Q從點B出發(fā)沿BC邊向點C2cm/s的速度移動,如果P,Q兩點同時出發(fā),分別到達B,C兩點后就停止移動.

(1)設(shè)運動開始后第t秒鐘后,五邊形APQCD的面積為Scm2,寫出St 的函數(shù)關(guān)系式,并指出自變量t的取值范圍.

(2)t為何值時,S最小?最小值是多少?

【答案】(1) S=72-SPBQ=t2-6t+72(0<t<6)(2)當(dāng)t=3,S有最小值63

【解析】

試題(1)先表示出第t秒鐘時AP、PB、BQ的長,根據(jù)三角形的面積公式即可得到△PBQ的面積的函數(shù)關(guān)系式,再用矩形ABCD的面積減去△PBQ的面積即可得到結(jié)果;

2)先把S=t2-6t+72配方為頂點,再根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)果.

(1)t秒鐘時,AP=t,PB=(6-t)cm;BQ=2tcm.

SPBQ=·(6-t)·2t=-t2+6t.

∵S矩形ABCD=6×12=72.

∴S=72-SPBQ=t2-6t+72(0<t<6).

(2)S=t2-6t+72=(t-3)2+63.

故當(dāng)t=3,S有最小值63.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個頂點的坐標(biāo)分別為,

1)點A關(guān)于y軸對稱的點的坐標(biāo)是 ;

2)將△ABC繞坐標(biāo)原點O順時針旋轉(zhuǎn)180°,畫出圖形,直接寫出點B的對應(yīng)點的坐標(biāo);

3)請直接寫出:以AB,C為頂點的平行四邊形的第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1AB⊙O的直徑,點CAB的延長線上,AB=4,BC=2,P⊙O上半部分的一個動點,連接OP,CP

1)求△OPC的最大面積;

2)求∠OCP的最大度數(shù);

3)如圖2,延長PO⊙O于點D,連接DB,當(dāng)CP=DB時,求證:CP⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON,點A在射線OM上.根據(jù)下列方法畫圖.

①以O為圓心,OA長為半徑畫圓,交ON于點B,交射線OM的反向延長線于點C,連接BC

②以OA為邊,在∠MON的內(nèi)部,畫∠AOP=∠OCB;

③連接AB,交OP于點E;

④過點A作⊙O的切線,交OP于點F

1)依題意補全圖形;

2)求證∠MOP=∠PON;

3)若∠MON60°,OF10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如表:

x

1

0

1

2

3

y

m

5

2

1

2

m的值是_____,當(dāng)y5時,x的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在平行四邊形ABCD中,EF分別為邊AB、CD的中點BD是對角線,AGDB,交CB的延長線于G,連接GF,若ADBD.下列結(jié)論:①DEBF;四邊形BEDF是菱形;③FGAB;④SBFG=.其中正確的是(  )

A. ①②③④ B. ①② C. ①③ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因為,即,所以我們對比函數(shù)來探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

<>

2

3

5

-3

-2

0

描點:在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點如圖所示:

1)請把軸左邊各點和右邊各點分別用一條光滑曲線,順次連接起來;

2)觀察圖象并分析表格,回答下列問題:

①當(dāng)時,的增大而______;(“增大”或“減小”)

的圖象是由的圖象向______平移______個單位而得到的;

③圖象關(guān)于點______中心對稱.(填點的坐標(biāo))

3)函數(shù)與直線交于點,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(mm+1),B(m+3,m1)都在反比例函數(shù)的圖象上,如果Mx軸上一點,Ny軸上一點,以點AB,M,N為頂點的四邊形是平行四邊形,直接寫出點M,N的坐標(biāo):____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=-x+7與正比例函數(shù)y=x的圖像交于點A,且與x軸交于點B.

1)求點A和點B的坐標(biāo);

2)過點AACy軸于點C,過點B作直線ly軸.動點P從點O出發(fā),以每秒1個單位長的速度,沿OCA的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線lx軸于點R,交線段BA或線段AO于點Q.當(dāng)點P到達點A時,點P和直線l都停止運動.在運動過程中,設(shè)動點P運動的時間為t.

①當(dāng)t為何值時,以A、PR為頂點的三角形的面積為8?

②是否存在以A、PQ為頂點的三角形是等腰三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案