【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A出發(fā),沿AB邊向點B以1cm/s的速度移動,同時點Q從點B出發(fā)沿BC邊向點C以2cm/s的速度移動,如果P,Q兩點同時出發(fā),分別到達B,C兩點后就停止移動.
(1)設(shè)運動開始后第t秒鐘后,五邊形APQCD的面積為Scm2,寫出S與t 的函數(shù)關(guān)系式,并指出自變量t的取值范圍.
(2)t為何值時,S最小?最小值是多少?
【答案】(1) S=72-S△PBQ=t2-6t+72(0<t<6);(2)當(dāng)t=3時,S有最小值63
【解析】
試題(1)先表示出第t秒鐘時AP、PB、BQ的長,根據(jù)三角形的面積公式即可得到△PBQ的面積的函數(shù)關(guān)系式,再用矩形ABCD的面積減去△PBQ的面積即可得到結(jié)果;
(2)先把S=t2-6t+72配方為頂點,再根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)果.
(1)第t秒鐘時,AP=t,故PB=(6-t)cm;BQ=2tcm.
故S△PBQ=·(6-t)·2t=-t2+6t.
∵S矩形ABCD=6×12=72.
∴S=72-S△PBQ=t2-6t+72(0<t<6).
(2)S=t2-6t+72=(t-3)2+63.
故當(dāng)t=3時,S有最小值63.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點的坐標(biāo)分別為,,.
(1)點A關(guān)于y軸對稱的點的坐標(biāo)是 ;
(2)將△ABC繞坐標(biāo)原點O順時針旋轉(zhuǎn)180°,畫出圖形,直接寫出點B的對應(yīng)點的坐標(biāo);
(3)請直接寫出:以A,B,C為頂點的平行四邊形的第四個頂點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,點C在AB的延長線上,AB=4,BC=2,P是⊙O上半部分的一個動點,連接OP,CP.
(1)求△OPC的最大面積;
(2)求∠OCP的最大度數(shù);
(3)如圖2,延長PO交⊙O于點D,連接DB,當(dāng)CP=DB時,求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON,點A在射線OM上.根據(jù)下列方法畫圖.
①以O為圓心,OA長為半徑畫圓,交ON于點B,交射線OM的反向延長線于點C,連接BC;
②以OA為邊,在∠MON的內(nèi)部,畫∠AOP=∠OCB;
③連接AB,交OP于點E;
④過點A作⊙O的切線,交OP于點F.
(1)依題意補全圖形;
(2)求證∠MOP=∠PON;
(3)若∠MON=60°,OF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | m | 5 | 2 | 1 | 2 | … |
則m的值是_____,當(dāng)y<5時,x的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點BD是對角線,AG∥DB,交CB的延長線于G,連接GF,若AD⊥BD.下列結(jié)論:①DE∥BF;②四邊形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正確的是( )
A. ①②③④ B. ①② C. ①③ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因為,即,所以我們對比函數(shù)來探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | <> | … | |||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點:在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點如圖所示:
(1)請把軸左邊各點和右邊各點分別用一條光滑曲線,順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當(dāng)時,隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個單位而得到的;
③圖象關(guān)于點______中心對稱.(填點的坐標(biāo))
(3)函數(shù)與直線交于點,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(m,m+1),B(m+3,m1)都在反比例函數(shù)的圖象上,如果M為x軸上一點,N為y軸上一點,以點A,B,M,N為頂點的四邊形是平行四邊形,直接寫出點M,N的坐標(biāo):____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=-x+7與正比例函數(shù)y=x的圖像交于點A,且與x軸交于點B.
(1)求點A和點B的坐標(biāo);
(2)過點A作AC⊥y軸于點C,過點B作直線l∥y軸.動點P從點O出發(fā),以每秒1個單位長的速度,沿O—C—A的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線l交x軸于點R,交線段BA或線段AO于點Q.當(dāng)點P到達點A時,點P和直線l都停止運動.在運動過程中,設(shè)動點P運動的時間為t秒.
①當(dāng)t為何值時,以A、P、R為頂點的三角形的面積為8?
②是否存在以A、P、Q為頂點的三角形是等腰三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com