【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠A=90°,AB=AD=8cm,CD=10cm,點P從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,點Q從點D出發(fā),沿DC方向勻速運動,速度為lcm/s.連接PQ,設運動時間為t(s)(0<t<8).解答下列問題:
(1)當t為何值時,PQ∥AD?
(2)設四邊形APQD的面積為y(cm2),求y與t的函數關系式;
(3)是否存在某一時刻t,使S四邊形APQO:S四邊形BCQP=17:27?若存在,求出t的值,并求此時PQ的長;若不存在,請說明理由.
【答案】(1)當t為s時,PQ∥AD;(2)y與t的函數關系式是y=;(3)t的值為2s或s,此時PQ的長為cm,見解析.
【解析】
(1)根據平行線分線段成比例的性質解答即可;
(2)過點D作DE⊥BC于點E,過點Q作QF⊥AD交AD的延長線于F,根據矩形的性質和三角函數解答即可;
(3)過點Q作QH⊥AB于點H,根據四邊形面積公式進行解答即可.
解:(1)∵PQ∥AD,AD∥BC
∴,
即
解得,
答:當t為s時,PQ∥AD.
(2)過點D作DE⊥BC于點E,過點Q作QF⊥AD交AD的延長線于F
∴∠DEC=∠QFD=90°
∵AD∥BC,∠A=90°
∴∠ABC=180°-∠A=90°
∴四邊形ABND是矩形
∴AB=DE,BE=AD
在Rt△DEC中,,
∵∠C=∠QDF
∴在Rt△DFQ和Rt△DEC中,
sin∠QDF=,即
∴
cos∠QDF=,即
∴
∵在四邊形ABCD中,∠A=90°,AB=AD
∴∠ABD=∠ADB=45°
∴y=S四邊形APQD=S四邊形APQF-S△DQF
=
=
=
答:y與t的函數關系式是y=.
(3)若S四邊形APQD:S四邊形BCQP=17:27,則y=S四邊形ABCD
∵S四邊形ABCD=
∴=34
解得t1=2,
∴t的值為2s或s.
過點Q作QH⊥AB于點H,
∴PH=
QH=AF=
∴PQ=
當t=2時,PQ=
當t=時,PQ=
∴此時PQ的長為cm.
科目:初中數學 來源: 題型:
【題目】如圖,一艘漁船位于海洋觀測站P的北偏東60°方向,漁船在A處與海洋觀測站P的距離為60海里,它沿正南方向航行一段時間后,到達位于海洋觀測站P的南偏東45°方向上的B處.求此時漁船所在的B處與海洋觀測站P的距離(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了豐富校園文化生活,促進學生積極參加體育運動,某校準備成立校排球隊,現計劃購進一批甲、乙兩種型號的排球,已知一個甲種型號排球的價格與一個乙種型號排球的價格之和為140元;如果購買6個甲種型號排球和5個乙種型號排球,一共需花費780元.
(1)求每個甲種型號排球和每個乙種型號排球的價格分別是多少元?
(2)學校計劃購買甲、乙兩種型號的排球共26個,其中甲種型號排球的個數多于乙種型號排球,并且學校購買甲、乙兩種型號排球的預算資金不超過1900元,求該學校共有幾種購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導的一種生活方式,某校為了解學生對共享單車的使用情況,隨機抽取部分學生進行問卷調查,并將這次調查的結果繪制了以下兩幅不完整的統(tǒng)計圖.
根據所給信息,解答下列問題:
(1)m= ;
(2)補全條形統(tǒng)計圖;
(3)這次調查結果的眾數是 ;
(4)已知全校共3000名學生,請估計“經常使用”共享單車的學生大約有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數學興趣小組的小穎想測量教學樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是0.8m,但當她馬上測量樹高時,發(fā)現樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),他先測得留在墻壁上的影高為1.2m,又測得地面的影長為2.6m,請你幫她算一下,樹高是( )
A、3.25m B、4.25m C、4.45m D、4.75m
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)與x軸分別交于A(﹣3,0),B兩點,與y軸交于點C,拋物線的頂點E(﹣1,4),對稱軸交x軸于點F.
(1)請直接寫出這條拋物線和直線AE、直線AC的解析式;
(2)連接AC、AE、CE,判斷△ACE的形狀,并說明理由;
(3)如圖2,點D是拋物線上一動點,它的橫坐標為m,且﹣3<m<﹣1,過點D作DK⊥x軸于點K,DK分別交線段AE、AC于點G、H.在點D的運動過程中,
①DG、GH、HK這三條線段能否相等?若相等,請求出點D的坐標;若不相等,請說明理由;
②在①的條件下,判斷CG與AE的數量關系,并直接寫出結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于反比例函數y=﹣,下列說法錯誤的是( 。
A.圖象經過點(1,﹣3)
B.圖象分布在第一、三象限
C.圖象關于原點對稱
D.圖象與坐標軸沒有交點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(材料閱讀)
我們曾解決過課本中的這樣一道題目:
如圖1,四邊形ABCD是正方形,E為BC邊上一點,延長BA至F,使AF=CE,連接DE,DF.……
提煉1:△ECD繞點D順時針旋轉90°得到△FAD;
提煉2:△ECD≌△FAD;
提煉3:旋轉、平移、軸對稱是圖形全等變換的三種方式.
(問題解決)
(1)如圖2,四邊形ABCD是正方形,E為BC邊上一點,連接DE,將△CDE沿DE折疊,點C落在G處,EG交AB于點F,連接DF.
可得:∠EDF= °;AF,FE,EC三者間的數量關系是 .
(2)如圖3,四邊形ABCD的面積為8,AB=AD,∠DAB=∠BCD=90°,連接AC.求AC的長度.
(3)如圖4,在△ABC中,∠ACB=90°,CA=CB,點D,E在邊AB上,∠DCE=45°.寫出AD,DE,EB間的數量關系,并證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com