【題目】如圖,AB為⊙O的切線,切點為B,連接AO,AO與⊙O交于點C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為(
A.
B. ﹣2
C.π﹣
D.

【答案】A
【解析】解:過O點作OE⊥CD于E, ∵AB為⊙O的切線,
∴∠ABO=90°,
∵∠A=30°,
∴∠AOB=60°,
∴∠COD=120°,∠OCD=∠ODC=30°,
∵⊙O的半徑為2,
∴OE=1,CE=DE= ,
∴CD=2 ,
∴圖中陰影部分的面積為: ×2 ×1= π﹣
故選:A.

【考點精析】關(guān)于本題考查的切線的性質(zhì)定理和扇形面積計算公式,需要了解切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校九年級學生舉行朗誦比賽,全年級學生都參加,學校對表現(xiàn)優(yōu)異的學生進行表彰,設(shè)置一、二、三等獎各進步獎共四個獎項,賽后將九年級(1)班的獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:
(1)九年級(1)班共有名學生;
(2)將條形圖補充完整:在扇形統(tǒng)計圖中,“二等獎”對應(yīng)的扇形的圓心角度數(shù)是;
(3)如果該九年級共有1250名學生,請估計榮獲一、二、三等獎的學生共有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線

(1)此拋物線的頂點坐標是 ,與x軸的交點坐標是 , ,與y軸交點坐標是 ,對稱軸直線是 ;
(2)在平面直角坐標系中畫出 的圖象;
(3)結(jié)合圖象,說明當x取何值時,y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求點B的坐標;
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“初中生騎電動車上學”的現(xiàn)象越來越受到社會的關(guān)注,某校利用“五一”假期,隨機抽查了本校若干名學生和部分家長對“初中生騎電動車上學”現(xiàn)象的看法,統(tǒng)計整理制作了如下的統(tǒng)計圖,請回答下列問題:
(1)這次抽查的家長總?cè)藬?shù)為為多少;
(2)請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)從這次接受調(diào)查的學生中,隨機抽查一個學生恰好抽到持“無所謂”態(tài)度的概率是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結(jié)論:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形④S四邊形ABMD= AM2
其中正確結(jié)論的是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為2的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點A′的坐標為( )

A.(1,
B.(﹣1,2)
C.(﹣1,
D.(﹣1,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(π﹣3.14)0+|cos30°﹣3|﹣( 2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點D關(guān)于直線AE的對稱點為F,求證:△ADF∽△ABC;

(2)如圖2,

在(1)的條件下,若α=45°,求證:DE2=BD2+CE2
(3)如圖3,

若α=45°,點E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.

查看答案和解析>>

同步練習冊答案