【題目】如圖,在Rt△ABC中,∠A=90°,AB=3,AC=4,D為AC中點(diǎn),P為AB上的動(dòng)點(diǎn),將P繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到P′,連CP′的最小值為( 。
A.1.6B.2.4C.2D.2
【答案】C
【解析】
先過(guò)P'作P'E⊥AC于E,根據(jù)△DAP≌△P'ED,可得P'E=AD=2,再根據(jù)當(dāng)AP=DE=2時(shí),DE=DC,即點(diǎn)E與點(diǎn)C重合,即可得出線段CP′的最小值為2.
如圖,過(guò)點(diǎn)P′作P′E⊥AC于點(diǎn)E,
則∠A=∠P′ED=90°,
由旋轉(zhuǎn)可知:
DP=DP′,∠PDP′=90°,
∴∠ADP=∠EP′D,
∴△DAP≌△P′ED(AAS)
∴P′E=AD=2,
∴當(dāng)AP=DE=2時(shí),DE=DC,即點(diǎn)E與點(diǎn)C重合,
此時(shí)CP′=EP′=2
∴線段CP′的最小值為2.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面坐標(biāo)系中,正方形的位置如圖所示,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,延長(zhǎng)交軸于點(diǎn),作正方形,正方形的面積為______,延長(zhǎng)交軸于點(diǎn),作正方形,……按這樣的規(guī)律進(jìn)行下去,正方形的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車(chē)到黑龍灘(用C表示)開(kāi)展社會(huì)實(shí)踐活動(dòng),車(chē)到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車(chē)輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+1與x軸,y軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx+c過(guò)點(diǎn)B,并且頂點(diǎn)D的坐標(biāo)為(﹣2,﹣1).
(1)求該拋物線的解析式;
(2)若拋物線與直線AB的另一個(gè)交點(diǎn)為F,點(diǎn)C是線段BF的中點(diǎn),過(guò)點(diǎn)C作BF的垂線交拋物線于點(diǎn)P,Q,求線段PQ的長(zhǎng)度;
(3)在(2)的條件下,點(diǎn)M是直線AB上一點(diǎn),點(diǎn)N是線段PQ的中點(diǎn),若PQ=2MN,直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)四位數(shù),記千位數(shù)字與個(gè)位數(shù)字之和為,十位數(shù)字與百位數(shù)字之和為,如果,那么稱(chēng)這個(gè)四位數(shù)為“對(duì)稱(chēng)數(shù)”
最小的“對(duì)稱(chēng)數(shù)”為 ;四位數(shù)與之和為最大的“對(duì)稱(chēng)數(shù)”,則的值為 ;
一個(gè)四位的“對(duì)稱(chēng)數(shù)”,它的百位數(shù)字是千位數(shù)字的倍,個(gè)位數(shù)字與十位數(shù)字之和為,且千位數(shù)字使得不等式組恰有個(gè)整數(shù)解,求出所有滿足條件的“對(duì)稱(chēng)數(shù)”的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,連接AD,把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)D落在點(diǎn)E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是 ,位置關(guān)系是 .
(2)探究證明:
在(1)的條件下,若點(diǎn)D在線段BC的延長(zhǎng)線上,請(qǐng)判斷(1)中結(jié)論是還成立嗎?請(qǐng)?jiān)趫D②中畫(huà)出圖形,并證明你的判斷.
(3)拓展延伸:
如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過(guò)點(diǎn)D作DF⊥AD交CE于點(diǎn)F,請(qǐng)直接寫(xiě)出線段CF長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格中已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(-4,3)、(-3,1)、(-1,3),按要求解決下列問(wèn)題:
(1)將△ABC向右平移1個(gè)單位長(zhǎng)度,再向下平移4個(gè)單位長(zhǎng)度,得到,作出;
(2)將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到作出
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】速滑運(yùn)動(dòng)受到許多年輕人的喜愛(ài)。如圖,四邊形是某速滑場(chǎng)館建造的滑臺(tái),已知,滑臺(tái)的高為米,且坡面的坡度為.后來(lái)為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.
(1)求新坡面的坡角及的長(zhǎng);
(2)原坡面底部的正前方米處是護(hù)墻,為保證安全,體育管理部門(mén)規(guī)定,坡面底部至少距護(hù)墻米。請(qǐng)問(wèn)新的設(shè)計(jì)方案能否通過(guò),試說(shuō)明理由(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,CD切⊙O于點(diǎn)C,AE⊥CD于點(diǎn)E
(1)求證:AC平分∠DAE;
(2)若AB=6,BD=2,求CE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com