【題目】關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.
求實(shí)數(shù)的取值范圍;
是否存在實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.
【答案】(1)且;(2)不存在符合條件的實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根.
【解析】
由于方程有兩個(gè)不相等的實(shí)數(shù)根,所以它的判別式,由此可以得到關(guān)于的不等式,解不等式即可求出的取值范圍.
首先利用根與系數(shù)的關(guān)系,求出兩根之和與兩根之積,再由方程的兩個(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根,可以得出關(guān)于的等式,解出值,然后判斷值是否在中的取值范圍內(nèi).
解:依題意得,
,
又,
的取值范圍是且;
解:不存在符合條件的實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根,
理由是:設(shè)方程的兩根分別為,,
由根與系數(shù)的關(guān)系有:,
又因?yàn)榉匠痰膬蓚(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根,
,
,
由知,,且,
不符合題意,
因此不存在符合條件的實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)研究,人體內(nèi)血乳酸濃度升高是運(yùn)動(dòng)后感覺疲勞的重要原因,運(yùn)動(dòng)員未運(yùn)動(dòng)時(shí),體內(nèi)血乳酸濃度水平通常在40mg/L以下;如果血乳酸濃度降到50mg/L以下,運(yùn)動(dòng)員就基本消除了疲勞,體育科研工作者根據(jù)實(shí)驗(yàn)數(shù)據(jù),繪制了一副圖象,它反映了運(yùn)動(dòng)員進(jìn)行高強(qiáng)度運(yùn)動(dòng)后,體內(nèi)血乳酸濃度隨時(shí)間變化而變化的函數(shù)關(guān)系.
下列敘述正確的是
A. 運(yùn)動(dòng)后40min時(shí),采用慢跑活動(dòng)方式放松時(shí)的血乳酸濃度與采用靜坐方式休息時(shí)的血乳酸濃度相同
B. 運(yùn)動(dòng)員高強(qiáng)度運(yùn)動(dòng)后最高血乳酸濃度大約為350mg/L
C. 運(yùn)動(dòng)員進(jìn)行完劇烈運(yùn)動(dòng),為了更快達(dá)到消除疲勞的效果,應(yīng)該采用慢跑活動(dòng)方式來放松
D. 采用慢跑活動(dòng)方式放松時(shí),運(yùn)動(dòng)員必須慢跑80min后才能基本消除疲勞
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,DE=3BE,點(diǎn)P,Q分別在BD,AD 上,則AP+PQ的最小值為:
A. 2 B. C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.
(1)求證:AD=CE;
(2)當(dāng)點(diǎn)D在什么位置時(shí),四邊形ADCE是矩形,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了準(zhǔn)備“迎新活動(dòng)”,用700元購買了甲、乙兩種小禮品260個(gè),其中購買甲種禮品比乙種禮品少用了100元.
(1)購買乙種禮品花了______元;
(2)如果甲種禮品的單價(jià)比乙種禮品的單價(jià)高20%,求乙種禮品的單價(jià).(列分式方程解應(yīng)用題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線L過點(diǎn)A(0,1)和B(1,0),P是x軸正半軸上的動(dòng)點(diǎn),OP的垂直平分線交L于點(diǎn)Q,交x軸于點(diǎn)M.
(1)直接寫出直線L的解析式;
(2)設(shè)OP=t,△OPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;并求出當(dāng)0<t<2時(shí),S的最大值;
(3)直線L1過點(diǎn)A且與x軸平行,問在L1上是否存在點(diǎn)C,使得△CPQ是以Q為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)C的坐標(biāo),并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A(a,0),B(b,3),C(c,0),滿足++=0.
(1)分別求出點(diǎn),,的坐標(biāo)及三角形ABC的面積.
(2)如圖2.過點(diǎn)C作于點(diǎn)D,F是線段AC上一點(diǎn),滿足,若點(diǎn)G是第二象限內(nèi)的一點(diǎn),連接DG,使,點(diǎn)E是線段AD上一動(dòng)點(diǎn)(不與A、D重合),連接CE交DF于點(diǎn)H,點(diǎn)E在線段AD上運(yùn)動(dòng)的過程中,的值是否會(huì)變化?若不變,請(qǐng)求出它的值;若變化,請(qǐng)說明理由.
(3)如圖3,若線段AB與軸相交于點(diǎn)F,且點(diǎn)F的坐標(biāo)為(0,),在坐標(biāo)軸上是否存在一點(diǎn)P,使三角形ABP和三角形ABC的面積相等?若存在,求出P點(diǎn)坐標(biāo).若不存在,請(qǐng)說明理由.(點(diǎn)C除外)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com