精英家教網 > 初中數學 > 題目詳情

【題目】△ 中, .取 邊的中點 ,作 于點 ,取 的中點 ,連接 , 交于點
(1)如圖1,如果 ,求證: 并求 的值;

(2)如圖2,如果 ,求證: 并用含 的式子表示 .

【答案】
(1)解:如圖1,連接AD,

∵AB=AC,點D是BC的中點,

∴∠ABC=∠C,∠BAD=∠DAC= ∠BAC,AD⊥BC,

∵AD⊥BC,DE⊥AC,

∴∠ADE+∠CDE=90°,∠C+∠CDE=90°,

∴∠ADE=∠C.

又∵∠ADB=∠DEC=90°,

∴△ADB∽△DEC,∴ ,即ADCE=BDDE.

∵點D是BC的中點,點F是DE的中點,

∴BD= BC,DE=2DF,

∴ADCE═ BC2DF=BCDF,

,

又∵∠ADE=∠C,

∴△AFD∽△BEC,

,在Rt△ADB中,

∵∠ABD=90°-∠BAD=90°- ∠BAC,BD= BC,

∴tan∠ABD=tan(90°- ∠BAC)= ,

= tan(90°- ∠BAC).

∵△AFD∽△BEC,

∴∠DAF=∠CBE.

∵∠CBE+∠BOD=90°,∠AOH=∠BOD,

∴∠DAF+∠AOH=∠CBE+∠BOD=90°,

∴∠AHO=180°-90°=90°,即∠AHB=90°

根據以上結論可得:∠AHB=90°, = tan(90°- ×90°)= ;∴AF⊥BE, =


(2)解:如圖2,

根據以上結論可得:∠AHB=90°, = tan(90°- α);∴AF⊥BE, = tan(90°- α)


【解析】(1)由AB=AC,點D是BC的中點,根據三線合一,得到AD⊥BC,由DE⊥AC,根據同角的余角相等,得到∠ADE=∠C;得到△ADB∽△DEC,得到比例,即ADCE=BDDE;由已知得到ADCE=BCDF,又∠ADE=∠C,得到△AFD∽△BEC,得到比例,在Rt△ADB中,根據三角函數定義,得到∠DAF=∠CBE,由三角形內角和定理求出∠AHO=90°,即∠AHB=90°,根據以上結論可得
【考點精析】掌握相似三角形的判定與性質和銳角三角函數的定義是解答本題的根本,需要知道相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知直線x軸于A,交y軸于B,過B,且,點C在第四象限,點

求點A,B,C的坐標;

M是直線AB上一動點,當最小時,求點M的坐標;

PQ分別在直線ABBC上,是以RQ為斜邊的等腰直角三角形直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一場活動中活動主辦方為了獎勵活動中取得了好成績的參賽選手,計劃購買共100件的甲、乙兩紀念品發(fā)放其中甲種紀念品每件售價120元,乙種紀念品每件售價80元,

1)如果購買甲、乙兩種紀念品一共花費了9600元,求購買甲、乙兩種紀念品各是多少件?

2)設購買甲種紀念品m件,如果購買乙種紀念品的件數不超過甲種紀念品的數量的2倍,并且總費用不超過9400元.問組委會購買甲、乙兩種紀念品共有幾種方案?哪一種方案所需總費用最少?最少總費用是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結EF、EO,若DE= ,∠DPA=45°.

(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列解方程組的部分過程,回答下列問題

解方程組

現有兩位同學的解法如下:

解法一;由①,得x2y+5,③

把③代入②,得3(2y+5)2y3……

解法二:①﹣②,得﹣2x2……

(1)解法一使用的具體方法是________,解法二使用的具體方法是______,以上兩種方法的共同點是________

(2)請你任選一種解法,把完整的解題過程寫出來

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,E在正方形ABCD,對角線AC上有一點P使PE+PD的和最小,這個最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等邊 中, , 分別是 , , 上的點, , , ,則 的面積與 的面積之比等于( )

A.1∶3
B.2∶3
C. ∶2
D. ∶3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB,DC(或它們的延長線)于點MN.當∠MAN繞點A旋轉到BM=DN(如圖1),易證BM+DN=MN

(1)∠MAN繞點A旋轉到BM≠DN(如圖2),線段BM,DNMN之間有怎樣的數量關系?寫出猜想,并加以證明.

(2)∠MAN繞點A旋轉到如圖3的位置時,線段BM,DNMN之間又有怎樣的數量關系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小美周末來到公園,發(fā)現在公園一角有一種“守株待兔”游戲.游戲設計者提供了一只兔子和一個有A,B,C,D,E五個出入口的兔籠,而且籠內的兔子從每個出入口走出兔籠的機會是均等的.規(guī)定:①玩家只能將小兔從A、B兩個出入口放入,②如果小兔進入籠子后選擇從開始進入的出入口離開,則可獲得一只價值5元小兔玩具,否則每玩一次應付費3元.
(1)請用表格或樹狀圖求小美玩一次“守株待兔”游戲能得到小兔玩具的概率;
(2)假設有1000人次玩此游戲,估計游戲設計者可賺多少元?

查看答案和解析>>

同步練習冊答案