【題目】以下是通過(guò)折疊正方形紙片得到等邊三角形的步驟取一張正方形的紙片進(jìn)行折疊,具體操作過(guò)程如下:
第一步:如圖,先把正方形ABCD對(duì)折,折痕為MN;
第二步:點(diǎn)E在線段MD上,將△ECD沿EC翻折,點(diǎn)D恰好落在MN上,記為點(diǎn)P,連接BP可得△BCP是等邊三角形
問(wèn)題:在折疊過(guò)程中,可以得到PB=PC;依據(jù)是________________________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當(dāng)△DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線上,連接BE.
填空:① ∠AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關(guān)系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=15,DE=7,求AB的長(zhǎng)度.
(3)探究發(fā)現(xiàn):
圖1中的△ACB和△DCE,在△DCE旋轉(zhuǎn)過(guò)程中當(dāng)點(diǎn)A,D,E不在同一直線上時(shí),設(shè)直線AD與BE相交于點(diǎn)O,試在備用圖中探索∠AOE的度數(shù),直接寫(xiě)出結(jié)果,不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上有兩定點(diǎn)A、B,點(diǎn)表示的數(shù)為6,點(diǎn)B在點(diǎn)A的左側(cè),且AB=20,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù)______,點(diǎn)P表示的數(shù)用含t的式子表示:_______;
(2)設(shè)點(diǎn)M是AP的中點(diǎn),點(diǎn)N是PB的中點(diǎn).點(diǎn)P在直線AB上運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不變化,求出線段MN的長(zhǎng)度.
(3)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、R同時(shí)出發(fā);當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)?與點(diǎn)R的距離為2個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:若關(guān)于的一元一次方程的解為,則稱(chēng)該方程為“和解方程”.例如:方程 的解為,而, 則方程為“和解方程".請(qǐng)根據(jù)上述規(guī)定解答下列問(wèn)題:(1)已知關(guān)于的一元一次方程是“和解方程”,則的值為________.(2)己知關(guān)于的一元一次方程是“和解方程”,并且它的解是,則的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=,x1x2=.
材料2、已知實(shí)數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.
解:由題知m、n是方程x2﹣x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,根據(jù)材料1得
m+n=1,mn=﹣1
∴
根據(jù)上述材料解決下面問(wèn)題;
(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2= ,x1x2= .
(2)已知實(shí)數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.
(3)已知實(shí)數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知矩形ABED,點(diǎn)C是邊DE的中點(diǎn),且AB=2AD.
(1)由圖1通過(guò)觀察、猜想可以得到線段AC與線段BC的數(shù)量關(guān)系為___,位置關(guān)系為__;
(2)保持圖1中的△ABC固定不變,繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖2中的位置(當(dāng)垂線AD、BE在直線MN的同側(cè)).試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明(第一問(wèn)中得到的猜想結(jié)論可以直接在證明中使用);
(3)保持圖2中的△ABC固定不變,繼續(xù)繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖3中的位置(當(dāng)垂線段AD、BE在直線MN的異側(cè)).試探究線段AD、BE、DE長(zhǎng)度之間有___關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,有一拋物線其表達(dá)式為.
(1)當(dāng)該拋物線過(guò)原點(diǎn)時(shí),求的值;
(2)坐標(biāo)系內(nèi)有一矩形OABC,其中、.
①直接寫(xiě)出C點(diǎn)坐標(biāo);
②如果拋物線與該矩形有2個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市晶泰星公司安排名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)件甲產(chǎn)品或件乙產(chǎn)品.根據(jù)市場(chǎng)行情測(cè)得,甲產(chǎn)品每件可獲利元,乙產(chǎn)品每件可獲利元.而實(shí)際生產(chǎn)中,生產(chǎn)乙產(chǎn)品需要數(shù)外支出一定的費(fèi)用,經(jīng)過(guò)核算,每生產(chǎn)件乙產(chǎn)品,當(dāng)天每件乙產(chǎn)品平均荻利減少元,設(shè)每天安排人生產(chǎn)乙產(chǎn)品.
(1)根據(jù)信息填表:
產(chǎn)品種類(lèi) | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(rùn)(元) |
甲 | |||
乙 |
(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤(rùn)比生產(chǎn)乙產(chǎn)品可獲得的利潤(rùn)多元,試問(wèn):該企業(yè)每天生產(chǎn)甲、乙產(chǎn)品可獲得總利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)一班和二班各推選名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了個(gè)球,兩個(gè)班選手的進(jìn)球數(shù)統(tǒng)計(jì)如下表,請(qǐng)根據(jù)表中數(shù)據(jù)回答問(wèn)題.
進(jìn)球數(shù)(個(gè)) | ||||||
一班人數(shù)(人) | ||||||
二班人數(shù)(人) |
填表;
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
一班 | 2.6 | |||
二班 | 7 | 7 | 7 |
如果要從這兩個(gè)班中選出一個(gè)班代表級(jí)部參加學(xué)校的投籃比賽,爭(zhēng)取奪得總進(jìn)球數(shù)團(tuán)體第一名,你認(rèn)為應(yīng)該選擇哪個(gè)班?如果要爭(zhēng)取個(gè)人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個(gè)班?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com