【題目】ABBC,∠1+∠290°,∠2=∠3BEDF平行嗎?為什么?

(解析)解:BEDF

ABBC,

∴∠ABC   °,

即∠3+∠4   °.

又∵∠1+∠290°,

且∠2=∠3

      

理由是:   

BEDF

理由是:   

【答案】90°;90°∠1,∠4;等角的余角相等;同位角相等,兩直線平行.

【解析】

試題由AB垂直于BC,利用垂直的定義得到∠ABC為直角,進(jìn)而得到∠3∠4互余,再由∠1∠2互余,根據(jù)∠2=∠3,利用等角的余角相等得到∠1=∠4,利用同位角相等兩直線平行即可得證.

試題解析:BE∥DF,

∵AB⊥BC,

∴∠ABC=90°,

∠3+∠4=90°

∵∠1+∠2=90°

∠2=∠3,

∴∠1=∠4,

理由是:等角的余角相等,

∴BE∥DF

理由是:同位角相等,兩直線平行.

故答案為:90;90∠1,∠4;等角的余角相等;同位角相等,兩直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形中,,上的一點(diǎn),連接平分的外角的平分線于

1)求證:

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車制造廠開(kāi)發(fā)一款新式電動(dòng)汽車,計(jì)劃一年生產(chǎn)安裝輛.由于抽調(diào)不出足夠的熟練工來(lái)完成新式電動(dòng)汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過(guò)培訓(xùn)后上崗,也能獨(dú)立進(jìn)行電動(dòng)汽車的安裝.生產(chǎn)開(kāi)始后,調(diào)研部門發(fā)現(xiàn):名熟練工和名新工人每月可安裝輛電動(dòng)汽車;名熟練工和名新工人每月可安裝輛電動(dòng)汽車.

(1)每名熟練工和新工人每月分別可以安裝多少輛電動(dòng)汽車?

(2)如果工廠招聘名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,ABC中,∠APBC邊上的一點(diǎn),是點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn),連結(jié),分別交AB、AC于點(diǎn)D、E.

①若,求的度數(shù);

②請(qǐng)直接寫(xiě)出∠A的數(shù)量關(guān)系:___________________________

(2)如圖2,在ABC中,若∠BAC,用三角板作出點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn)、(不寫(xiě)作法,保留作圖痕跡),試判斷點(diǎn),與點(diǎn)A是否在同一直線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),∠1=∠2∠C=∠D

試說(shuō)明:AC∥DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線y=ax2+bx+c過(guò)點(diǎn)A(﹣1,0),且經(jīng)過(guò)直線y=x﹣3與坐標(biāo)軸的兩個(gè)交點(diǎn)B、C.

(1)求拋物線的表達(dá)式;

(2)若點(diǎn)M在第四象限內(nèi)且在拋物線上,有OMBC,垂足為D,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A1,2),B3,1),C﹣2,﹣1).

(1)在圖中作出△ABC關(guān)于x軸的對(duì)稱圖形△A1B1C1 ;

(2)寫(xiě)出點(diǎn)A1 , B1 , C1的坐標(biāo)(直接寫(xiě)答案), A1________ ,B1________ ,C1________;

(3)△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1(點(diǎn)A與點(diǎn)B不重合),我們定義:這樣的兩條拋物L1L2互為友好拋物線,可見(jiàn)一條拋物線的友好拋物線可以有多條.

1)如圖2,已知拋物線L3y2x28x4y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對(duì)稱軸對(duì)稱的點(diǎn)D的坐標(biāo);

2)請(qǐng)求出以點(diǎn)D為頂點(diǎn)的L3的友好拋物線L4的解析式,并指出L3L4y同時(shí)隨x增大而增大的自變量的取值范圍;

3)若拋物ya1 (xm) 2n的任意一條友好拋物線的解析式為ya2 (xh) 2k,請(qǐng)寫(xiě)出a1a2的關(guān)系式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,將BC沿BD所在的直線折疊,使點(diǎn)C落在AB邊上的E點(diǎn)處.

(1)若∠ADE=30°,求∠BDC的度數(shù).

(2)AB=AC=8,BC=5,求三角形AED的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案