【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:

(1)設(shè)△APQ的面積為S,當(dāng)t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時,求t的值;′
(3)當(dāng)t為何值時,△APQ是等腰三角形?

【答案】
(1)

解:如圖甲,過點P作PH⊥AC于H,

∵∠C=90°,

∴AC⊥BC,

∴PH∥BC,

∴△APH∽△ABC,

∵AC=4cm,BC=3cm,

∴AB=5cm,

= ,

∴PH=3﹣ t,

∴△AQP的面積為:

S= ×AQ×PH= ×t×(3﹣ t)=﹣ (t﹣ 2+

∴當(dāng)t為 秒時,S最大值為 cm2


(2)

解:如圖乙,連接PP′,PP′交QC于E,

當(dāng)四邊形PQP′C為菱形時,PE垂直平分QC,即PE⊥AC,QE=EC,

∴△APE∽△ABC,

= ,

∴AE= = =﹣ t+4

QE=AE﹣AQ═﹣ t+4﹣t=﹣ t+4,

QE= QC= (4﹣t)=﹣ t+2,

∴﹣ t+4=﹣ t+2,

解得:t= ,

∵0< <4,

∴當(dāng)四邊形PQP′C為菱形時,t的值是 s


(3)

解:由(1)知,

PE=﹣ t+3,與(2)同理得:QE=AE﹣AQ=﹣ t+4

∴PQ= = = ,

在△APQ中,

① 當(dāng)AQ=AP,即t=5﹣t時,解得:t1= ;

②當(dāng)PQ=AQ,即 =t時,解得:t2= ,t3=5;

③當(dāng)PQ=AP,即 =5﹣t時,解得:t4=0,t5= ;

∵0<t<4,

∴t3=5,t4=0不合題意,舍去,

∴當(dāng)t為 s或 s或 s時,△APQ是等腰三角形


【解析】(1)過點P作PH⊥AC于H,由△APH∽△ABC,得出 = ,從而求出AB,再根據(jù) = ,得出PH=3﹣ t,則△AQP的面積為: AQPH= t(3﹣ t),最后進行整理即可得出答案;(2)連接PP′交QC于E,當(dāng)四邊形PQP′C為菱形時,得出△APE∽△ABC, = ,求出AE=﹣ t+4,再根據(jù)QE=AE﹣AQ,QE= QC得出﹣ t+4=﹣ t+2,再求t即可;(3)由(1)知,PE=﹣ t+3,與(2)同理得:QE=﹣ t+4,從而求出PQ= ,
在△APQ中,分三種情況討論:①當(dāng)AQ=AP,即t=5﹣t,②當(dāng)PQ=AQ,即 =t,③當(dāng)PQ=AP,即 =5﹣t,再分別計算即可.
【考點精析】本題主要考查了相似三角形的應(yīng)用的相關(guān)知識點,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是正方形,點A,C的坐標(biāo)分別為(2,0),(0,2),D是x軸正半軸上的一點(點D在點A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點在第一象限),連接FC交AB的延長線于點G.若反比例函數(shù)的圖象經(jīng)過點E,G兩點,則k的值為 ______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于反比例函數(shù)y的下列說法正確的是(

該函數(shù)的圖象在第二、四象限;

Ax1y1)、Bx2、y2)兩點在該函數(shù)圖象上,若x1x2,則y1y2

當(dāng)x2時,則y>-2;

若反比例函數(shù)y與一次函數(shù)yxb的圖象無交點,則b的范圍是-4b4.

A. B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張家界市為了治理城市污水,需要鋪設(shè)一段全長為300米的污水排放管道,鋪設(shè)120米后,為了盡可能減少施工對城市交通所造成的影響,后來每天的工作量比原計劃增加20%,結(jié)果共用了27天完成了這一任務(wù),求原計劃每天鋪設(shè)管道多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生排球墊球訓(xùn)練,訓(xùn)練前后,對每個學(xué)生進行考核.現(xiàn)隨機抽取部分學(xué)生,統(tǒng)計了訓(xùn)練前后兩次考核成績,并按“A,B,C”三個等次繪制了如圖不完整的統(tǒng)計圖.試根據(jù)統(tǒng)計圖信息,解答下列問題:
(1)抽取的學(xué)生中,訓(xùn)練后“A”等次的人數(shù)是多少?并補全統(tǒng)計圖.
(2)若學(xué)校有600名學(xué)生,請估計該校訓(xùn)練后成績?yōu)椤癆”等次的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖像交于A(2,4),B(-4,n)兩點,交x軸于點C.

(1)m、n的值;

(2)請直接寫出不等式kx+b<的解集;

(3)x軸下方的圖像沿x軸翻折,點B落在點B′處,連接AB′、B′C,求△A B′C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程x2-(2k+1)x+4k-2=0

(1)求證:不論k取何值,這個方程總有實數(shù)根

(2)若等腰ABC一邊長a=4,另兩邊長b,c恰好是這個方程的兩根,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B在線段EF上,點M、N分別是線段EABF的中點,EAABBF=1:2:3,若MN=8cm,則線段EF的長是( 。

A. 10 cm B. 11 cm C. 12 cm D. 13 cm

查看答案和解析>>

同步練習(xí)冊答案