【題目】設(shè)C為線段AB的中點(diǎn),四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長(zhǎng)為半徑的⊙BAB相交于F點(diǎn),延長(zhǎng)EB交⊙BG點(diǎn),連接DG交于ABQ點(diǎn),連接AD.

求證:(1)AD是⊙B的切線;(2)AD=AQ;(3)BC2=CFEG.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.

【解析】試題分析:(1)連接BD,由DC⊥AB,C為AB的中點(diǎn),由線段垂直平分線的性質(zhì),可得AD=BD,再根據(jù)正方形的性質(zhì),可得∠ADB=90°;
(2)由BD=BG與CD∥BE,利用等邊對(duì)等角與平行線的性質(zhì),即可求得∠G=∠CDG=∠BDG=∠BCD=22.5°,繼而求得∠ADQ=∠AQD=67.5°,由等角對(duì)等邊,可證得AD=AQ;
(3)易求得∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,即可證得Rt△DCF∽R(shí)t△GED,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可證得結(jié)論.

試題解析:

(1)連接BD,

四邊形BCDE是正方形,

∴∠DBA=45°,∠DCB=90°,即DC⊥AB,

C為AB的中點(diǎn),

CD是線段AB的垂直平分線,

∴AD=BD,

∴∠DAB=∠DBA=45°,

∴∠ADB=90°,

即BD⊥AD,

BD為半徑,

AD是B的切線;

(2)∵BD=BG,

∴∠BDG=∠G,

∵CD∥BE,

∴∠CDG=∠G,

∴∠G=∠CDG=∠BDG=∠BCD=22.5°,

∴∠ADQ=90°﹣∠BDG=67.5°,∠AQB=∠BQG=90°﹣∠G=67.5°,

∴∠ADQ=∠AQD,

∴AD=AQ;

(3)連接DF,

BDF中,BD=BF,

∴∠BFD=∠BDF,

∵∠DBF=45°,

∴∠BFD=∠BDF=67.5°,

∵∠GDB=22.5°,

在RtDEF與RtGCD中,

∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,

∴Rt△DCF∽R(shí)t△GED,

,

∵CD=DE=BC,

∴BC2=CFEG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,用三種大小不同的六個(gè)正方形和一個(gè)缺角的長(zhǎng)方形拼成大長(zhǎng)方形ABCD,其中GH=1,GK=1,設(shè)BF=a.

(1)用含a的代數(shù)式表示CM=_____cm,DM=_______cm.

(2)用含a的代數(shù)式表示大長(zhǎng)方形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為AB,C,D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:

1)本次抽樣調(diào)查共抽取了多少名學(xué)生?

2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;

3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?

4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫樹(shù)狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DEBC,AO,DF交于點(diǎn)C.EAB=BCF.

(1)求證:ABDF;

(2)求證:OB2=OEOF;

(3)連接OD,若∠OBC=ODC,求證:四邊形ABCD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上的 A 、 B 兩點(diǎn)所表示的數(shù)分別為 a 、b,a b 0 ,ab 0

(1)原點(diǎn)O 的位置在 ;

A.點(diǎn) A 的右邊 B. 點(diǎn) B 的左邊

C.點(diǎn) A 與點(diǎn) B 之間,且靠近點(diǎn) A D. 點(diǎn) A 與點(diǎn) B 之間,且靠近點(diǎn) B

(2)若 a b 2 ,

①利用數(shù)軸比較大。 a 1, b 1 ;(填“>”、“<”或“=”)

②化簡(jiǎn):|a-1|+|b+1|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的一元二次方程ax22a1x+a2=0a0).

1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1x2(其中x1x2).若y是關(guān)于a的函數(shù),且y=ax2x1,求這個(gè)函數(shù)的表達(dá)式;

3)將(2)中所得的函數(shù)的圖象在直線a=2的左側(cè)部分沿直線a=2翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請(qǐng)你結(jié)合這個(gè)新的圖象直接寫出:當(dāng)關(guān)于a的函數(shù)y=2a+b的圖象與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. 當(dāng)ABBC時(shí),它是菱形 B. 當(dāng)ACBD時(shí),它是菱形

C. 當(dāng)∠ABC90°時(shí),它是矩形 D. 當(dāng)ACBD時(shí),它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校利用二維碼進(jìn)行學(xué)生學(xué)號(hào)統(tǒng)一編排.黑色小正方形表示1,白色小正方形表示0,將每一行數(shù)字從左到右依次記為a,bc,d,那么利用公式a×23-b×22-c×21+d計(jì)算出每一行的數(shù)據(jù).第一行表示年級(jí),第二行表示班級(jí),如圖1所示,第一行數(shù)字從左往右依次是1,00,1,則表示的數(shù)據(jù)為1×23+0×22+0×21+1=9,計(jì)作09,第二行數(shù)字從左往右依次是1,01,0,則表示的數(shù)據(jù)為1×23+0×22+1×21=10,計(jì)作10,以此類推,圖1代表的統(tǒng)一學(xué)號(hào)為091034,表示9年級(jí)10班34號(hào).小明所對(duì)應(yīng)的二維碼如圖2所示,則他的編號(hào)是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子里裝有3個(gè)黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來(lái)數(shù)的前提下,小明為估計(jì)其中白球數(shù),采用如下辦法:隨機(jī)從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機(jī)摸出一球,記下顏色,不斷重復(fù)上述過(guò)程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計(jì)口袋中白球大約有( )

A. 10個(gè) B. 12 個(gè) C. 15 個(gè) D. 18個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案