【題目】如圖,平面直角坐標(biāo)系xOy中,點A、B的坐標(biāo)分別為(9,0)、(6,﹣9),△AB'O'是△ABO關(guān)于點A的位似圖形,且O'的坐標(biāo)為(﹣3,0),則點B'的坐標(biāo)為( )
A.(8,﹣12)B.(﹣8,12)
C.(8,﹣12)或(﹣8,12)D.(5,﹣12)
【答案】D
【解析】
過點B作BC⊥OA于點C,過點B′作B′D⊥AO于點D,利用位似圖形的性質(zhì)可求出B′D的長,可得B′的縱坐標(biāo),利用待定系數(shù)法可得直線AB的解析式,把B′縱坐標(biāo)代入即可得B′的橫坐標(biāo),即可得答案.
過點B作BC⊥OA于點C,過點B′作B′D⊥AO于點D,
∴BC、B′D分別是△ABO和△AB′O′的高,
∵A(9,0)、B(6,﹣9),O′(-3,0),
∴AO=9,AO′=12,BC=9,
∵△AB′O′是△ABO關(guān)于點A的位似圖形,
∴=,即=,
解得:B′D=12,
∴點B′的縱坐標(biāo)為-12,
設(shè)直線AB的解析式為:y=kx+b,
∴,
解得:,
∴直線AB的解析式為:y=3x﹣27,
當(dāng)y=﹣12時,﹣12=3x﹣27,
解得:x=5,
故B′點坐標(biāo)為:(5,﹣12),
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間 每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標(biāo)及△A2BC2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC為50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A(﹣2,0)、B(6,0)兩點.
(1)求該拋物線的解析式;
(2)點P為y軸左側(cè)拋物線上一個動點,若S△PAB=32,求此時P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,在△ABC中截出一個矩形DEFG,使得點D在AB邊上,EF在BC邊上,點G在AC邊上,設(shè)EF=x,矩形DEFG的面積為y.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)直接寫出自變量x的取值范圍_______;
(3)若DG=2DE,則矩形DEFG的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以10元/千克的價格收購一批農(nóng)產(chǎn)品進(jìn)行銷售,經(jīng)過市場調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:
銷售價格x(元/千克) | 10 | 13 | 16 | 19 | 22 | |
日銷售量y(千克) | 100 | 85 | 70 | 55 | 40 |
(1)請你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定y與x之間的函數(shù)表達(dá)式;
(2)若該水果店要獲得375元的日銷售利潤,銷售單價x應(yīng)定為多少元?
(3)該水果店應(yīng)該如何確定這批水果的銷售價格,才能使日銷售利潤W最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A與點B關(guān)于原點O對稱,點A,點C,點P在直線BC上運動.
(1)連接AC、BC,求證:△ABC是等邊三角形;
(2)求點P的坐標(biāo),使∠APO=;
(3)在平面內(nèi),平移直線BC,試探索:當(dāng)BC在不同位置時,使∠APO=的點P的個數(shù)是否保持不變?若不變,指出點P的個數(shù)有幾個?若改變,指出點P的個數(shù)情況,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為a的正△ABC內(nèi)有一邊長為b的內(nèi)接正△DEF,則△AEF的內(nèi)切圓半徑為_____(用含a、b的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com