【題目】在△ABC中,AB=12,AC=10,BC=9,AD是BC邊上的高.將△ABC按如圖所示的方式折疊,使點(diǎn)A與點(diǎn)D重合,折痕為EF,則△DEF的周長(zhǎng)為( )
A. 9.5 B. 10.5 C. 11 D. 15.5
【答案】D
【解析】分析:根據(jù)折疊圖形的對(duì)稱(chēng)性,易得△EDF≌△EAF,運(yùn)用中位線定理可知△AEF的周長(zhǎng)等于△ABC周長(zhǎng)的一半,進(jìn)而△DEF的周長(zhǎng)可求解.
解答:解:∵△EDF是△EAF折疊以后形成的圖形,
∴△EDF≌△EAF,
∴∠AEF=∠DEF,
∵AD是BC邊上的高,
∴EF∥CB,
又∵∠AEF=∠B,
∴∠BDE=∠DEF,
∴∠B=∠BDE,
∴BE=DE,
同理,DF=CF,
∴EF為△ABC的中位線,
∴△DEF的周長(zhǎng)為△EAF的周長(zhǎng),即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.5.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)過(guò)點(diǎn)(-2,5),和直線,分別在下列條件下求這個(gè)一次函數(shù)的解析式.
(1)它的圖象與直線平行;
(2)它的圖象與y軸的交點(diǎn)和直線與y軸的交點(diǎn)關(guān)于軸對(duì)稱(chēng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知為上的一點(diǎn),按下列要求進(jìn)行作圖.
(1)作的平分線.
(2)在上取一點(diǎn),使得.
(3)愛(ài)動(dòng)腦筋的小剛經(jīng)過(guò)仔細(xì)觀察后,進(jìn)行如下操作:在邊上取一點(diǎn),使得,這時(shí)他發(fā)現(xiàn)與之間存在一定的數(shù)量關(guān)系,請(qǐng)寫(xiě)出 與的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知, .
(1)用直尺和圓規(guī)作出一條過(guò)點(diǎn)的直線,使得點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)落在邊上(不寫(xiě)作法,保留作圖痕跡).
(2)設(shè)直線與邊的交點(diǎn)為,且,請(qǐng)你通過(guò)觀察或測(cè)量,猜想線段之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:△ABC中,D為BC的中點(diǎn),DE⊥BC交∠BAC的平分線AE于E,EG⊥AB于G,EF⊥AC交AC的延長(zhǎng)線于F,BG與CF的大小關(guān)系如何?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,為真命題的是( )
A. 同位角相等 B. 若a>b,則﹣2a>﹣2b
C. 若a2=b2,則a=b D. 對(duì)頂角相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com