【題目】某企業(yè)為了提高工人勞動(dòng)的積極性,決定對(duì)工人的月工資進(jìn)行調(diào)整.已知該企業(yè)有 n 名工人,調(diào)整后的月工資 y(元)與調(diào)整前的月工資 x(元)滿足一次函數(shù)關(guān)系,如下表:
(1)求 y 與 x 的函數(shù)關(guān)系式;
(2)若某名工人調(diào)整前月工資是4800元,那么調(diào)整后這名工人月工資增加了多少元?
(3)這 名工人調(diào)整前、后的平均月工資分別為,,猜想與的關(guān)系式,并寫出推導(dǎo)過程.
【答案】(1)y=1.08x+100;(2)調(diào)整后這名工人月工資增加了484元;(3) .推導(dǎo)過程見解析.
【解析】
(1)由題干中調(diào)整后的月工資(元)與調(diào)整前的月工資(元)滿足一次函數(shù)關(guān)系,直接設(shè).將表格中第二名、第三名工人調(diào)價(jià)前后的值分別代入即可求解;
(2)將4800代入(1)的結(jié)論計(jì)算即可;
(3)根據(jù)平均數(shù)的定義列式相加即可證明.
(1) ∵調(diào)整后的月工資(元)與調(diào)整前的月工資(元)滿足一次函數(shù)關(guān)系,
設(shè)y 與 x 的函數(shù)關(guān)系式為.
依題意得:,
解得:,
∴y 與 x 的函數(shù)關(guān)系式為;
(2) 當(dāng)時(shí),(元),
∴5284-4800=484(元),
∴調(diào)整后這名工人月工資增加了484元;
(3) ∵
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)寫出圖1中函數(shù)圖象的解析式 ;
(2)如圖2,過直線上一點(diǎn)作軸的垂線交的圖象于點(diǎn),交直線于點(diǎn).
①試比較與的大小,并證明你的結(jié)論;
②若時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) y=-x+6的圖像與正比例函數(shù) y=2x 的圖像交于點(diǎn) A.
(1)求點(diǎn) A 的坐標(biāo);
(2)已知點(diǎn) B 在直線 y=-x+6上,且橫坐標(biāo)為5,在 x 軸上確定點(diǎn) P,使 PA+PB 的值最小,求出此時(shí) P 點(diǎn)坐標(biāo),并直接寫出 PA+PB 的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn), .將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得,連接.
(1)求證: 是等邊三角形;
(2)當(dāng)時(shí),試判斷的形狀,并說明理由;
(3)探究:當(dāng)為多少度時(shí), 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,甲、乙兩船同時(shí)由港口A出發(fā)開往海島B,甲船沿某一方向直航140海里的海島B,其速度為14海里/小時(shí);乙船速度為20海里/小時(shí),先沿正東方向航行3小時(shí)后,到達(dá)C港口接旅客,停留1小時(shí)后再轉(zhuǎn)向北偏東30°方向開往B島,其速度仍為20海里/小時(shí).
(1)求海島B到航線AC的距離;
(2)甲船在航行至P處,發(fā)現(xiàn)乙船在其正東方向的Q處,問此時(shí)兩船相距多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠ACB=90°,BC=2,AC=4,點(diǎn)D在射線BC上,以點(diǎn)D為圓心,BD為半徑畫弧交邊AB于點(diǎn)E,過點(diǎn)E作EF⊥AB交邊AC于點(diǎn)F,射線ED交射線AC于點(diǎn)G.
(1)求證:△EFG∽△AEG;
(2)設(shè)FG=x,△EFG的面積為y,求y關(guān)于x的函數(shù)解析式并寫出定義域;
(3)聯(lián)結(jié)DF,當(dāng)△EFD是等腰三角形時(shí),請(qǐng)直接寫出FG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)求該二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo);
(2)若m<0,當(dāng)1≤x≤4時(shí),y的最大值是2,求當(dāng)1≤x≤4時(shí),y的最小值;
(3)已知P(2,),Q(4,)為平面直角坐標(biāo)系中兩點(diǎn),當(dāng)拋物線與線段PQ有公共點(diǎn)時(shí),請(qǐng)求出m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com