【題目】如圖,四邊形ABCD是正方形,CF∥BD,DF∥BE,若BE=BD,則∠CDF= .
【答案】105°
【解析】解:連接AC,過D作DG⊥CF于G,
∵四邊形ABCD是正方形,
∴AC⊥BD,OD=OC= BD,
∵BD∥CF,
∴DG⊥BD,
∴四邊形ODGC是正方形,
∴DG=OD= BD,
∵CF∥BD,DF∥BE,BE=BD,
∴四邊形BEFD是菱形,
∵∴DF=BD= DG,
∴∠F=30°,
∴BDF=150°,
∴∠CDF=150°﹣45°=105°,
所以答案是:105°.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和正方形的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角);正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,過C點(diǎn)作CE⊥BD于E,延長AF、EC交于點(diǎn)H,下列結(jié)論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)人做游戲:在一個(gè)不透明的口袋中裝有4張相同的紙牌,它們分別標(biāo)有數(shù)字1,2,3,4.從中隨機(jī)摸出一張紙牌然后放回,再隨機(jī)摸出一張紙牌,若兩次摸出的紙牌上數(shù)字之和是3的倍數(shù),則甲勝;否則乙勝.這個(gè)游戲?qū)﹄p方公平嗎?請列表格或畫樹狀圖說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數(shù).
請完善解答過程,并在括號內(nèi)填寫相應(yīng)的理論依據(jù).
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級舉行英語演講比賽,購買A,B兩種筆記本作為獎(jiǎng)品,這兩種筆記本的單價(jià)分別是12元和8元.根據(jù)比賽設(shè)獎(jiǎng)情況,需購買筆記本共30本,并且所購買A筆記本的數(shù)量要不多于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量,設(shè)買A筆記本n本,買兩種筆記本的總費(fèi)為w元.
(1)寫出w(元)關(guān)于n(本)的函數(shù)關(guān)系式,并求出自變量n的取值范圍;
(2)購買這兩種筆記本各多少時(shí),費(fèi)用最少?最少的費(fèi)用是多少元?
(3)商店為了促銷,決定僅對A種類型的筆記本每本讓利a元銷售,B種類型筆記本售價(jià)不變.問購買這兩種筆記本各多少本時(shí)花費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2,在Rt△ABC內(nèi)部作正方形D1E1F1G1 , 其中點(diǎn)D1 , E1分別在AC,BC邊上,邊F1G1在BC上,它的面積記作S1;按同樣的方法在△CD1E1內(nèi)部作正方形D2E2F2G2 , 它的面積記作S2 , S2= , …,照此規(guī)律作下去,正方形DnEnFnGn的面積Sn= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜坡AB的坡度為1:2.4,長度為26m,在坡頂B所在的平臺(tái)上有一座電視塔CD,已知在A處測得塔頂D的仰角為45°,在B處測得塔頂D的仰角為73°,求電視塔CD的高度. (參考數(shù)值:sin73°≈ ,cos73°≈0. ,tan73°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿AD向點(diǎn)D勻速運(yùn)動(dòng),速度是1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā)沿CB方向,在射線CB上勻速運(yùn)動(dòng),速度是2cm/s,過點(diǎn)P作PE∥AC交DC于點(diǎn)E,連接PQ、QE,PQ交AC于F.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8),解答下列問題:
(1)當(dāng)t為何值時(shí),四邊形PFCE是平行四邊形;
(2)設(shè)△PQE的面積為s(cm2),求s與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使得△PQE的面積為矩形ABCD面積的 ;
(4)是否存在某一時(shí)刻t,使得點(diǎn)E在線段PQ的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEO的度數(shù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com