【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點順時針方向旋轉得到△ADE,連接BD,CE交于點F,求證:△AEC≌△ADB.

【答案】解:由旋轉的性質得:△ABC≌△ADE,且AB=AC, ∴AE=AD,AC=AB,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,
在△AEC和△ADB中,
,
∴△AEC≌△ADB.
【解析】由旋轉的性質得到三角形ABC與三角形ADE全等,以及AB=AC,利用全等三角形對應邊相等,對應角相等得到兩對邊相等,一對角相等,利用SAS得到三角形AEC與三角形ADB全等即可.
【考點精析】本題主要考查了等腰三角形的性質和旋轉的性質的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P以1cm/秒的速度沿折線BE﹣ED﹣DC運動到點C時停止,點Q以2cm/秒的速度沿BC運動到點C時停止.設P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2 . 已知y與t的函數(shù)關系圖像如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段).

(1)試根據(jù)圖(2)求0<t≤5時,△BPQ的面積y關于t的函數(shù)解析式;
(2)求出線段BC、BE、ED的長度;
(3)當t為多少秒時,以B、P、Q為頂點的三角形和△ABE相似;
(4)如圖(3)過E作EF⊥BC于F,△BEF繞點B按順時針方向旋轉一定角度,如果△BEF中E、F的對應點H、I恰好和射線BE、CD的交點G在一條直線,求此時C、I兩點之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】經過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉或向右轉,如果這三種可能性大小相同,現(xiàn)有兩輛汽車經過這個十字路口.
(1)試用樹狀圖或列表法中的一種列舉出這輛汽車行駛方向所有可能的結果;
(2)求至少有一輛汽車向左轉的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解九年級學生的體能情況,抽調了一部分學生進行一分鐘跳繩測試,將測試成績整理后作出如圖所示的統(tǒng)計圖. 甲同學計算出前兩組的頻率和是0.12,乙同學計算出跳繩次數(shù)不少于100次的同學占96%,丙同學計算出從左至右第二、三、四組的頻數(shù)的比為41715,則本次測試共抽調的人數(shù)為( )

A. 120 B. 150 C. 180 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七年級(3)班學生參加學校組織的“綠色奧運”知識競賽,老師將學生的成績按10分的組距分段,統(tǒng)計每個分數(shù)段出現(xiàn)的頻數(shù),填入頻數(shù)統(tǒng)計表,并繪制頻數(shù)直方圖.

(3)班“綠色奧運”知識競賽成績頻數(shù)統(tǒng)計表

分數(shù)段/

組中值/

頻數(shù)/

頻率

49.5~59.5

54.5

a

0.050

59.5~69.5

64.5

9

0.225

69.5~79.5

74.5

10

0.250

79.5~89.5

84.5

14

0.350

89.5~99.5

94.5

5

b

(3)班“綠色奧運”知識競賽成績頻數(shù)直方圖

(1)頻數(shù)統(tǒng)計表中a=_____,b=______;

(2)把頻數(shù)直方圖補充完整;

(3)學校設定成績在69.5分以上的學生將獲得一等獎或二等獎,一等獎獎勵作業(yè)本15本及獎金50元,二等獎獎勵作業(yè)本10本及獎金30元. 已知這部分學生共獲得作業(yè)本335本,請你求出他們共獲得的獎金.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】保護視力要求人寫字時眼睛和筆端的距離應超過30cm,圖1是一位同學的坐姿,把他的眼睛B,肘關節(jié)C和筆端A的位置關系抽象成圖2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的這種坐姿符合保護視力的要求嗎?請說明理由.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】命題“兩直線平行,內錯角的平分線互相平行”是真命題嗎?如果是,請給出證明;如果不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E為邊AB的中點,將△CBE沿CE翻折得到△CFE,連接AF.若∠EAF=70°,那么∠BCF=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場將一批學生書包按成本價提高50%后標價,又按標價的80%優(yōu)惠賣出,每個的售價是72元.每個這種書包的成本價是多少元?利潤是多少元?利潤率是多少?

查看答案和解析>>

同步練習冊答案