【題目】對(duì)于平面直角坐標(biāo)系xOy中的任意兩點(diǎn)M(x1,y1),N(x2,y2),給出如下定義:
將|x1﹣x2|稱(chēng)為點(diǎn)M,N之間的“橫長(zhǎng)”,|y1﹣y2|稱(chēng)為點(diǎn)M,N之間的縱長(zhǎng)”,點(diǎn)M與點(diǎn)N的“橫長(zhǎng)”與“縱長(zhǎng)”之和稱(chēng)為“折線(xiàn)距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.
例如:若點(diǎn)M(﹣1,1),點(diǎn)N(2,﹣2),則點(diǎn)M與點(diǎn)N的“折線(xiàn)距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.
根據(jù)以上定義,解決下列問(wèn)題:
已知點(diǎn)P(3,2).
(1)若點(diǎn)A(a,2),且d(P,A)=5,求a的值;
(2)已知點(diǎn)B(b,b),且d(P,B)<3,直接寫(xiě)出b的取值范圍;
(3)若第一象限內(nèi)的點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”與“縱長(zhǎng)”相等,且d(P,T)>5,簡(jiǎn)要分析點(diǎn)T的橫坐標(biāo)t的取值范圍.
【答案】(1)a=﹣2或a=8;(2)1<b<4;(3)t或0<t.
【解析】
(1)將點(diǎn)P與點(diǎn)A代入d(M,N)=|x1x2|+|y1y2|即可求解;
(2)將點(diǎn)B與點(diǎn)P代入d(M,N)=|x1x2|+|y1y2|,得到d(P,B)=|3b|+|2b|,分三種情況去掉絕對(duì)值符號(hào)進(jìn)行化簡(jiǎn),有當(dāng)b<2 時(shí),d(P,B)=3b+2b=52b<3;當(dāng)2≤b≤3時(shí),d(P,B)=3b+b2=1<3;當(dāng)b>3時(shí),d(P,B)=b3+b2=2b5<3;
(3)設(shè)T點(diǎn)的坐標(biāo)為(t,m),由點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”與“縱長(zhǎng)”相等,得到|t3|=|m2|,得到t與m的關(guān)系式,再由T在第一象限,d(P,T)>5,結(jié)合求解即可.
(1)∵點(diǎn)P(3,2),點(diǎn)A(a,2),
∴d(P,A)=|3﹣a|+|2﹣2|=5,
∴a=﹣2或a=8;
(2)∵點(diǎn)P(3,2),點(diǎn)B(b,b),
∴d(P,B)=|3﹣b|+|2﹣b|,
當(dāng)b<2 時(shí),d(P,B)=3﹣b+2﹣b=5﹣2b<3,
∴b>1,∴1<b<2;
當(dāng)2≤b≤3時(shí),d(P,B)=3﹣b+b﹣2=1<3成立,
∴2≤b≤3;
當(dāng)b>3時(shí),d(P,B)=b﹣3+b﹣2=2b﹣5<3,
∴b<4,∴3<b<4;
綜上所述:1<b<4;
(3)設(shè)T點(diǎn)的坐標(biāo)為(t,m),
點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”=|t﹣3|,
點(diǎn)T與點(diǎn)P的“縱長(zhǎng)”=|m﹣2|.
∵點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”與“縱長(zhǎng)”相等,
∴|t﹣3|=|m﹣2|,
∴t﹣3=m﹣2或t﹣3=2﹣m,
∴m=t﹣1或m=5﹣t.
∵點(diǎn)T是第一象限內(nèi)的點(diǎn),
∴m>0,
∴t>1或t<5,
又∵d(P,T)>5,
∴2|t﹣3|>5,
∴t或t,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB =90°,AC = BC =2,AB =,點(diǎn)P是AB邊上的點(diǎn)(異于點(diǎn)A,B),點(diǎn)Q是BC邊上的點(diǎn)(異于點(diǎn)B,C),且∠CPQ =45°.當(dāng)△CPQ是等腰三角形時(shí),CQ的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司招聘職員兩名,對(duì)甲、乙、丙、丁四名候選人進(jìn)行了筆試和面試,然后再按筆試占、面試占計(jì)算候選人的綜合成績(jī).他們的各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>
候選人 | 筆試成績(jī)/分 | 面試成績(jī)/分 |
甲 | ||
乙 | ||
丙 | ||
丁 |
(1)現(xiàn)得知候選人丙的綜合成績(jī)?yōu)?/span>分,求表中的值
(2)求出其余三名候選人的綜合成績(jī),并以綜合成績(jī)排序確定所要招聘的前兩名的人選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正三角形內(nèi)的一點(diǎn),且,,.若將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°后,得到,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有邊長(zhǎng)為1的等邊三角形和頂角為120°的等腰,以為頂點(diǎn)作角,兩邊分別交、于、,連結(jié),則的周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xoy中,拋物線(xiàn)y=a(x+1)(x-9)經(jīng)過(guò)A,B兩點(diǎn),四邊形OABC
矩形,已知點(diǎn)A坐標(biāo)為(0,6)。
(1) 求拋物線(xiàn)解析式;
(2) 點(diǎn)E在線(xiàn)段AC上移動(dòng)(不與C重合),過(guò)點(diǎn)E作EF⊥BE,交x軸于點(diǎn)F.請(qǐng)判斷的值是否變化;若不變,求出它的值;若變化,請(qǐng)說(shuō)明理由。
(3)在(2)的條件下,若E在直線(xiàn)AC上移動(dòng),當(dāng)點(diǎn)E關(guān)于直線(xiàn)BF的對(duì)稱(chēng)點(diǎn)在拋物線(xiàn)對(duì)稱(chēng)軸上時(shí),請(qǐng)求出BE的長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)4﹣(﹣2.75);
(2)﹣32×;
(3)1﹣;
(4)16÷(﹣2)3÷×(﹣4)+(﹣1)2019.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次食品安檢中,抽查某企業(yè) 10 袋奶粉,每袋取出 100 克,檢測(cè)每 100
克奶粉蛋白質(zhì)含量與規(guī)定每 100 克含量(蛋白質(zhì))比較,不足為負(fù),超過(guò)為正, 記錄如下:(注:規(guī)定每 100g 奶粉蛋白質(zhì)含量為 15g)
﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5
(1)求平均每 100 克奶粉含蛋白質(zhì)為多少?
(2)每 100 克奶粉含蛋白質(zhì)不少于 14 克為合格,求合格率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別連接正方形對(duì)邊的中點(diǎn),能將正方形劃分成四個(gè)面積相等的小正方形用上述方法對(duì)一個(gè)邊長(zhǎng)為1的正方形進(jìn)行劃分,第1次劃分得到圖1,第2次劃分圖2,則第3次劃分得到的圖中共有______個(gè)正方形,借助劃分得到的圖形,計(jì)算的結(jié)果為______(用含的式子表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com