【題目】數(shù)與形是數(shù)學(xué)中的兩個(gè)最古老,也是最基本的研究對(duì)象,它們?cè)谝欢l件下可以互相轉(zhuǎn)化.樹(shù)形結(jié)合就是把抽象的數(shù)學(xué)語(yǔ)言、數(shù)量關(guān)系與直觀的幾何圖形、位置關(guān)系結(jié)合起來(lái),通過(guò)“以形助數(shù)”或“以數(shù)解形”即通過(guò)抽象思維與形象思維的結(jié)合,可以使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,從而起到優(yōu)化解題途徑的目的.
(1) (思想應(yīng)用)已知m, n均為正實(shí)數(shù),且m+n=2求的最小值通過(guò)分析,愛(ài)思考的小明想到了利用下面的構(gòu)造解決此問(wèn)題:如圖, AB=2,AC=1,BD=2,AC⊥AB,BD⊥AB,點(diǎn)E是線段AB上的動(dòng)點(diǎn),且不與端點(diǎn)重合,連接CE,DE,設(shè)AE=m, BE=n.
①用含m的代數(shù)式表示CE=_______, 用含n的代數(shù)式表示DE= ;
②據(jù)此求的最小值;
(2)(類比應(yīng)用)根據(jù)上述的方法,求代數(shù)式的最小值.
【答案】(1)①,;②;(2)20.
【解析】
(1)①利用勾股定理得到CE=,DE=;
②根據(jù)CE+DE=+,利用兩點(diǎn)之間線段得到CE+DE≥CD(當(dāng)且僅當(dāng)C、E、D共線時(shí)取等號(hào)),作DH⊥CA交CA的延長(zhǎng)線于H,如圖,易得四邊形ABDH為矩形,利用勾股定理計(jì)算出CD=,從而求解;
(2)如(1)中圖,設(shè)AB=16,CA=5,BD=7,AE=x,則BE=16-x,利用勾股定理得到CE=,DE=;根據(jù)兩點(diǎn)之間線段得到而CE+DE≥CD(當(dāng)且僅當(dāng)C、E、D共線時(shí)取等號(hào)),根據(jù)四邊形ABDH為矩形,利用勾股定理計(jì)算出CD即可得到最小值.
解:(1)①在Rt△ACE中,,
在Rt△BDE中,DE=;
②CE+DE=+,
而CE+DE≥CD(當(dāng)且僅當(dāng)C、E、D共線時(shí)取等號(hào)),
作DH⊥CA交CA的延長(zhǎng)線于H,如圖,易得四邊形ABDH為矩形,
∴AH=BD=2,DH=AB=2,
在Rt△CHD中,CD=,
∴CE+DE的最小值為,即的最小值為;
(2)如(1)中圖,設(shè)AB=16,CA=5,BD=7,AE=x,則BE=16-x,
在Rt△ACE中,CE=,
在Rt△BDE中,DE=
∴CE+DE=+,
而CE+DE≥CD(當(dāng)且僅當(dāng)C、E、D共線時(shí)取等號(hào)),
∵四邊形ABDH為矩形,
∴AH=BD=7,DH=AB=16,
在Rt△CHD中,CD=
∴CE+DE的最小值為20,即的最小值為20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說(shuō)函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;
(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;
(3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)△ABC為直角三角形時(shí),寫(xiě)出點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩同學(xué)只有一張乒乓球比賽的門(mén)票,誰(shuí)都想去,最后商定通過(guò)轉(zhuǎn)盤(pán)游戲決定.游戲規(guī)則是:轉(zhuǎn)動(dòng)下面平均分成三個(gè)扇形且標(biāo)有不同顏色的轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)連續(xù)轉(zhuǎn)動(dòng)兩次,若指針前后所指顏色相同,則甲去;否則乙去.(如果指針恰好停在分割線上,那么重轉(zhuǎn)一次,直到指針指向一種顏色為止)
(1)轉(zhuǎn)盤(pán)連續(xù)轉(zhuǎn)動(dòng)兩次,指針?biāo)割伾灿袔追N情況?通過(guò)畫(huà)樹(shù)狀圖或列表法加以說(shuō)明;
(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系中,已知A(1,0),以點(diǎn)A為圓心畫(huà)圓,點(diǎn)M(4,4)在⊙A上,直線y=﹣x+b過(guò)點(diǎn)M,分別交x軸、y軸于B、C兩點(diǎn).
(1)①填空:⊙A的半徑為 ,b= .(不需寫(xiě)解答過(guò)程)
②判斷直線BC與⊙A的位置關(guān)系,并說(shuō)明理由.
(2)若EF切⊙A于點(diǎn)F分別交AB和BC于G、E,且FE⊥BC,求的值.
(3)若點(diǎn)P在⊙A上,點(diǎn)Q是y軸上一點(diǎn)且在點(diǎn)C下方,當(dāng)△PQM為等腰直角三角形時(shí),直接寫(xiě)出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,n+1個(gè)邊長(zhǎng)為2的等邊三角形有一條邊在同一直線上,設(shè)△B2D1C1面積為S1,△B3D2C2面積為S2,…,△Bn+1DnCn面積為Sn,則Sn等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),新能源汽車以其舒適環(huán)保、節(jié)能經(jīng)濟(jì)的優(yōu)勢(shì)受到熱捧,隨之而來(lái)的就是新能汽車銷量的急速增加,當(dāng)前市場(chǎng)上新能漂汽車從動(dòng)力上分純電動(dòng)和混合動(dòng)力兩種,從用途上又分為乘用式和商用式兩種,據(jù)中國(guó)汽車工業(yè)協(xié)會(huì)提供的信息,2017年全年新能源乘用車的累計(jì)銷量為57.9萬(wàn)輛,其中,純電動(dòng)乘用車銷量為46.8萬(wàn)輛,混合動(dòng)力乘用車銷量為11.1萬(wàn)輛; 2017年全年新能源商用車的累計(jì)銷量為19.8萬(wàn)輛,其中,純電動(dòng)商用車銷量為18.4萬(wàn)輛,混合動(dòng)力商用車銷量為1.4萬(wàn)輛,請(qǐng)根據(jù)以上材料解答下列問(wèn)題:
(1)請(qǐng)用統(tǒng)計(jì)表表示我國(guó)2017年新能源汽車各類車型銷量情況;
(2)小穎根據(jù)上述信息,計(jì)算出2017年我國(guó)新能源各類車型總銷量為77.7萬(wàn)輛,并繪制了“2017年我國(guó)新能源汽車四類車型銷量比例”的扇形統(tǒng)計(jì)圖,如圖1,請(qǐng)你將該圖補(bǔ)充完整(其中的百分?jǐn)?shù)精確到0.1%);
(3)2017年我國(guó)新能源乘用車銷量最高的十個(gè)城市排名情況如圖2,請(qǐng)根據(jù)圖2中信息寫(xiě)出這些城市新能源乘用車銷售情況的特點(diǎn)(寫(xiě)出一條即可);
(4)數(shù)據(jù)顯示,2018年1~3月的新能源乘用車總銷量排行榜上位居前四的廠家是比亞迪、北汽、上汽、江準(zhǔn),參加社會(huì)實(shí)踐的大學(xué)生小王想對(duì)其中兩個(gè)廠家進(jìn)行深入調(diào)研,他將四個(gè)完全相同的乒乓球進(jìn)行編號(hào)(用“1,2,3,4”依次對(duì)應(yīng)上述四個(gè)廠家),并將乒乓球放入不透明的袋子中攪勻,從中一次拿出兩個(gè)乒乓球,根據(jù)乒乓球上的編號(hào)決定要調(diào)研的廠家.求小王恰好調(diào)研“比亞迪”和“江淮”這兩個(gè)廠家的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號(hào)單車的車架新投放時(shí)的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.
(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)
(2)根據(jù)經(jīng)驗(yàn),當(dāng)車座E到CB的距離調(diào)整至等于人體胯高(腿長(zhǎng))的0.85時(shí),坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長(zhǎng).(結(jié)果精確到0.1cm)
(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新知學(xué)習(xí),若一條線段把一個(gè)平面圖形分成面積相等的兩部分,我們把這條段線做該平面圖形的二分線解決問(wèn)題:
(1)①三角形的中線、高線、角平分線中,一定是三角形的二分線的是_______
②如圖1,已知△ABC中,AD是BC邊上的中線,點(diǎn)E,F分別在AB,DC上,連接EF,與AD交于點(diǎn)G,若則EF_____(填“是”或“不是”)△ABC的一條二分線.并說(shuō)明理由.
(2)如圖2,四邊形ABCD中,CD平行于AB,點(diǎn)G是AD的中點(diǎn),射線CG交射線BA于點(diǎn)E,取EB的中點(diǎn)F,連接CF.求證:CF是四邊形ABCD的二分線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com