精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點G,交BE于點H,下面說法不正確的是(

A.ABE的面積=BCE的面積B.AFG=AGF

C.BH=CHD.FAG=2ACF

【答案】C

【解析】

根據中線的性質即可判斷A,根據直角三角形的銳角互余即可判斷B,根據同角的余角相等以及角平分線的性質即可判斷D.

根據三角形中線的性質可得:ABE的面積和BCE的面積相等,故A正確,

因為∠BAC90°,所以∠AFG+ACF=90°,因為AD是高,所以∠DGC+DCG=90°,

因為CF是角平分線,所以∠ACF=DCG,所以∠AFG=DGC,又因為∠DGC=AGF,所以

AFG=∠AGF,故B正確,

因為∠FAG+ABC=90°,ACB+ABC=90°,所以∠FAG=ACB,又因為CF是角平分線,所以∠ACB2ACF,所以∠FAG2ACF,故D正確,

假設BHCH,ACB=30°,則∠HBC=HCB=15°,ABC=60°,

所以∠ABE=60°15°=45°,因為∠BAC90°,所以AB=AE,因為AE=EC,所以,這與在直角三角形中30°所對直角邊等于斜邊的一半相矛盾,所以假設不成立,故④不一定正確,

故選A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,正方形MNPQ網格中,每個小方格的邊長都相等,正方形ABCD的頂點在正方形MNPQ4條邊的小方格頂點上.

1)設正方形MNPQ網格內的每個小方格的邊長為1,求:正方形ABCD的面積;

2在圖2中畫出以AB為一條直角邊的等腰直角△ABC,且點C在小正方形的頂點上;

在圖2中畫出以AB為一邊的菱形ABDE,且點D和點E均在小正方形的頂點上,菱形ABDE的面積為15,連接CE,請直接寫出線段CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知等邊三角形ABCAB=12,以AB為直徑的半圓與BC邊交于點D,過點DDFAC,垂足為F,過點FFGAB,垂足為G,連接GD,

1)求證:DF與⊙O的位置關系并證明;

2)求FG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綜合與實踐:

問題情境:

如圖 1,ABCD,∠PAB=25°,∠PCD=37°,求∠APC的度數,小明的思路是:過點PPEAB,通過平行線性質來求∠APC

問題解決:

1)按小明的思路,易求得∠APC 的度數為 °;

問題遷移:

如圖 2,ABCD,點 P 在射線 OM 上運動,記∠PAB=α,∠PCD=β

2)當點 P B,D 兩點之間運動時,問∠APC α,β 之間有何數量關系? 請說明理由;

拓展延伸:

3)在(2)的條件下,如果點 P B,D 兩點外側運動時 (點 P 與點 O,BD 三點不重合)請你直接寫出當點 P 在線段 OB 上時,∠APC α,β 之間的數量關 ,點 P 在射線 DM 上時,∠APC α,β 之間的數量關系

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點P

1)若∠B40°,∠AEC75°,求證:ABBC;

2)若∠BAC90°,AP為△AECEC上中線,求∠B的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】RtABC中,∠C90°,AC,點DBC邊上一點,且BDAD,∠ADC60°,則△ABC的周長為_____.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=1,AB>1,AG平分BAD,分別過點B,CBEAG 于點E,CFAG于點F,則AEGF的值為(

A. 1 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,已知:點A(0,0),B(,0),C(0,1).在△ABC內依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…,則第n個等邊三角形的邊長等于(  

A. B. C. D.

查看答案和解析>>

同步練習冊答案