【題目】如圖是某幾何體的三視圖,這個(gè)幾何體的側(cè)面積是(
A.6π
B.2 π
C. π
D.3π

【答案】C
【解析】解:由三視圖可知此幾何體為圓錐, ∴圓錐的底面半徑為1,高為3,
∴圓錐的母線長(zhǎng)為 ,
∵圓錐的底面周長(zhǎng)等于圓錐的側(cè)面展開扇形的弧長(zhǎng),
∴圓錐的底面周長(zhǎng)=圓錐的側(cè)面展開扇形的弧長(zhǎng)=2πr=2π×1=2π,
∴圓錐的側(cè)面積= lr= ×2π× = π,
故選C.
【考點(diǎn)精析】本題主要考查了圓錐的相關(guān)計(jì)算和由三視圖判斷幾何體的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)A錐側(cè)面展開圖是一個(gè)扇形,這個(gè)扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.;在三視圖中,通過主視圖、俯視圖可以確定組合圖形的列數(shù);通過俯視圖、左視圖可以確定組合圖形的行數(shù);通過主視圖、左視圖可以確定行與列中的最高層數(shù)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將兩張等寬的長(zhǎng)方形紙條交叉疊放,重疊部分是一個(gè)四邊形ABCD,若AD=6cm,∠ABC=60°,則四邊形ABCD的面積等于cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)M(cos30°,sin30°)關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)是(
A.( ,
B.(﹣ ,﹣
C.(﹣
D.(﹣ ,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店通過調(diào)低價(jià)格的方式促銷n個(gè)不同的玩具,調(diào)整后的單價(jià)y(元)與調(diào)整前的單價(jià)x(元)滿足一次函數(shù)關(guān)系,如表:

第1個(gè)

第2個(gè)

第3個(gè)

第4個(gè)

第n個(gè)

調(diào)整前的單價(jià)x(元)

x1

x2=6

x3=72

x4

xn

調(diào)整后的單價(jià)y(元)

y1

y2=4

y3=59

y4

yn

已知這n個(gè)玩具調(diào)整后的單價(jià)都大于2元.
(1)求y與x的函數(shù)關(guān)系式,并確定x的取值范圍;
(2)某個(gè)玩具調(diào)整前單價(jià)是108元,顧客購(gòu)買這個(gè)玩具省了多少錢?
(3)這n個(gè)玩具調(diào)整前、后的平均單價(jià)分別為 , ,猜想 的關(guān)系式,并寫出推導(dǎo)過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校“體育課外活動(dòng)興趣小組”,開設(shè)了以下體育課外活動(dòng)項(xiàng)目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:
(1)這次被調(diào)查的學(xué)生共有人,在扇形統(tǒng)計(jì)圖中“D”對(duì)應(yīng)的圓心角的度數(shù)為;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于 MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④SDAC:SABC=1:3.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,OA=5.OA與⊙O相交于點(diǎn)P,AB與⊙O相切于點(diǎn)B,BP的延長(zhǎng)線交直線l于點(diǎn)C.

(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說明理由;
(2)若PC=2 ,求⊙O的半徑和線段PB的長(zhǎng);
(3)若在⊙O上存在點(diǎn)Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案