【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,在距離CD的正后方30米的觀測點P處,以22°的仰角測得建筑物的頂端C恰好擋住教學(xué)樓的頂端A,而在建筑物CD上距離地面3米高的E處,測得教學(xué)樓的頂端A的仰角為45°,求教學(xué)樓AB的高度.
(參考數(shù)據(jù):sin22°≈ ,cos22°≈ ,tan22°≈

【答案】解:如圖作EF⊥AB于F,則四邊形EFBD是矩形.

∵∠AEF=45°,∠AFE=90°,
∴∠AEF=∠EAF=45°,
∴EF=AF,設(shè)EF=AF=x,則BD=EF=x,
在Rt△PAB中,∵AB=x+3,PB=30+x,
∴tan22°=
= ,
∴x=15,
∴AB=x+3=18m,
答:教學(xué)樓AB的高度為18m
【解析】如圖作EF⊥AB于F,則四邊形EFBD是矩形.設(shè)EF=AF=x,在Rt△PAB中,AB=x+3,PB=30+x,根據(jù)tan22°= ,可得 = ,解方程即可解決問題.
【考點精析】根據(jù)題目的已知條件,利用關(guān)于仰角俯角問題的相關(guān)知識可以得到問題的答案,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小東在教學(xué)樓距地面9米高的窗口C處,測得正前方旗桿頂部A點的仰角為37°,旗桿底部B點的俯角為45°,升旗時,國旗上端懸掛在距地面2.25米處,若國旗隨國歌聲冉冉升起,并在國歌播放45秒結(jié)束時到達旗桿頂端,則國旗應(yīng)以多少米/秒的速度勻速上升?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準備購置甲乙兩種羽毛球拍若干,已知甲種球拍的單價比乙種球拍的單價多40元,且購買4副甲種球拍與購買6副乙種球拍的費用相同.
(1)兩種球拍的單價各是多少元?
(2)若學(xué)校準備購買100副甲乙兩種羽毛球拍,且購買甲種球拍的費用不少于乙種球拍費用的3倍,問購買多少副甲種球拍總費用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸相交于A、B兩點,點B的坐標為(3,0),與y軸相交于點C(0,﹣3),頂點為D.

(1)求出拋物線y=x2+bx+c的表達式;
(2)連結(jié)BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標為m.
①當m為何值時,四邊形PEDF為平行四邊形.
②設(shè)四邊形OBFC的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了促進生活垃圾的分類處理,將生活垃圾分為:可回垃圾、廚余垃圾、其他垃圾三類,分別記為A,B,C:并且設(shè)置了相應(yīng)的垃圾箱,依次記為a,b,c.
(1)若將三類垃圾隨機投入三個垃圾箱,請你用樹形圖的方法求垃圾投放正確的概率:
(2)為了調(diào)查小區(qū)垃圾分類投放情況,現(xiàn)隨機抽取了該小區(qū)三類垃圾箱中總重500kg生活垃圾,數(shù)據(jù)如下(單位:)

a

b

c

A

40

15

10

B

60

250

40

C

15

15

55

試估計“廚余垃圾”投放正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2= (m為常數(shù),且m≠0)的圖象交于點A(﹣2,1)、B(1,n)
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)連接OA、OB,求△AOB的面積;
(3)直接寫出當y1<y2時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,需在一面墻上繪制兩個形狀相同的拋物絨型圖案,按照圖中的直角坐標系,最高點M到橫軸的距離是4米,到縱軸的距離是6米;縱軸上的點A到橫軸的距離是1米,右側(cè)拋物線的最大高度是左側(cè)拋物線最大高度的一半.(結(jié)果保留整數(shù)或分數(shù),參考數(shù)據(jù): = =
(1)求左側(cè)拋物線的表達式;
(2)求右側(cè)拋物線的表達式;
(3)求這個圖案在水平方向上的最大跨度是多少米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點C,且AB+BC=BE,則∠B的度數(shù)是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點B(a,5)在第二象限,點C在y軸上移動,以BC為斜邊作等腰直角△BCD,我們發(fā)現(xiàn)直角頂點D點隨著C點的移動也在一條直線上移動,這條直線的函數(shù)表達式是

查看答案和解析>>

同步練習(xí)冊答案