【題目】已知:直線m∥n,點(diǎn)A,B分別是直線m,n上任意兩點(diǎn),在直線n上取一點(diǎn)C,使BC=AB,連接AC,在直線AC上任取一點(diǎn)E,作∠BEF=∠ABC,EF交直線m于點(diǎn)F.
(1)如圖1,當(dāng)點(diǎn)E在線段AC上,且∠AFE=30°時(shí),求∠ABE的度數(shù);
(2)若點(diǎn)E是線段AC上任意一點(diǎn),求證:EF=BE;
(3)如圖2,當(dāng)點(diǎn)E在線段AC的延長(zhǎng)線上時(shí),若∠ABC=90°,請(qǐng)判斷線段EF與BE的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)30°;(2)見(jiàn)解析;(3)EF=BE,見(jiàn)解析
【解析】
(1)根據(jù)平行線的性質(zhì)得到∠FAB=∠ABC,根據(jù)三角形內(nèi)角和定理解答即可;
(2)以點(diǎn)E為圓心,以EA為半徑畫(huà)弧交直線m于點(diǎn)M,連接EM,證明△AEB≌△MEF,根據(jù)全等三角形的性質(zhì)證明;
(3)在直線m上截取AN=AB,連接NE,證明△NAE≌△ABE,根據(jù)全等三角形的性質(zhì)得到EN=EB,∠ANE=∠ABE,證明EN=EF,等量代換即可.
(1)∵m∥n,
∴∠FAB=∠ABC,
∵∠BEF=∠ABC,
∴∠FAB=∠BEF,
∵∠AHF=∠EHB,∠AFE=30°,
∴∠ABE=30°;
(2)如圖1,以點(diǎn)E為圓心,以EA為半徑畫(huà)弧交直線m于點(diǎn)M,連接EM,
∴EM=EA,
∴∠EMA=∠EAM,
∵BC=AB,
∴∠CAB=∠ACB,
∵m∥n,
∴∠MAC=∠ACB,∠FAB=∠ABC,
∴∠MAC=∠CAB,
∴∠CAB=∠EMA,
在△AEB和△MEF中,
,
∴△AEB≌△MEF(AAS)
∴EF=EB;
(3)EF=BE.
理由如下:如圖2,在直線m上截取AN=AB,連接NE,
∵∠ABC=90°,
∴∠CAB=∠ACB=45°,
∵m∥n,
∴∠NAE=∠ACB=∠CAB=45°,∠FAB=90°,
在△NAE和△ABE中,
,
∴△NAE≌△ABE(SAS),
∴EN=EB,∠ANE=∠ABE,
∵∠BEF=∠ABC=90°,
∴∠FAB+∠BEF=180°,
∴∠ABE+∠EFA=180°,
∴∠ANE+∠EFA=180°
∵∠ANE+∠ENF=180°,
∴∠ENF=∠EFA,
∴EN=EF,
∴EF=BE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】創(chuàng)新需要每個(gè)人的參與,就拿小華來(lái)說(shuō),為了解決曬衣服的,聰明的他想到了一個(gè)好辦法,在家寬敞的院內(nèi)地面上立兩根等長(zhǎng)的立柱、 (均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線,如圖,已知立柱米, 米.
(1)求繩子最低點(diǎn)離地面的距離;
(2)為了防止衣服碰到地面,小華在離為米的位置處用一根垂直于地面的立柱撐起繩子 (如圖2),使左邊拋物線的最低點(diǎn)距為米,離地面米,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,折疊矩形ABCD,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)F處,若BC=8,AB=6,則線段CE的長(zhǎng)度是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣(mài)出500件,而且定價(jià)每上漲0.1元,其銷(xiāo)售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過(guò)批發(fā)價(jià)的2.5倍.
(1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣(mài)出________件;
(2)如果商店要實(shí)現(xiàn)每天800元的銷(xiāo)售利潤(rùn),那該如何定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+6交x軸于A(﹣2,0),B(3,0)兩點(diǎn),交y軸于點(diǎn)C.
(1)求a,b的值;
(2)連接BC,點(diǎn)P為第一象限拋物線上一點(diǎn),過(guò)點(diǎn)A作AD⊥x軸,過(guò)點(diǎn)P作PD⊥BC于交直線AD于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為t,AD長(zhǎng)為d,求d與t的函數(shù)關(guān)系式(請(qǐng)求出自變量t的取值范圍);
(3)在(2)的條件下,DP與BC交于點(diǎn)F,過(guò)點(diǎn)D作DE∥AB交BC于點(diǎn)E,點(diǎn)Q為直線DP上方拋物線上一點(diǎn),連接AP、PC,若DP=CE,∠QPC=∠APD時(shí),求點(diǎn)Q坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)“求助”沒(méi)有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果小明第一題不使用“求助”,那么小明答對(duì)第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)對(duì)隊(duì)員進(jìn)行定點(diǎn)投籃測(cè)試,每人每天投籃10次,現(xiàn)對(duì)甲、乙兩名隊(duì)員在五天中進(jìn)球數(shù)(單位:個(gè))進(jìn)行統(tǒng)計(jì),結(jié)果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
經(jīng)過(guò)計(jì)算,甲進(jìn)球的平均數(shù)為8,方差為3.2.
(1)求乙進(jìn)球的平均數(shù)和方差;
(2)如果綜合考慮平均成績(jī)和成績(jī)穩(wěn)定性?xún)煞矫娴囊蛩,從甲、乙兩名?duì)員中選出一人去參加定點(diǎn)投籃比賽,應(yīng)選誰(shuí)?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某片果園有果樹(shù)80棵,現(xiàn)準(zhǔn)備多種一些果樹(shù)提高果園產(chǎn)量,但是如果多種樹(shù),那么樹(shù)之間的距離和每棵樹(shù)所受光照就會(huì)減少,單棵樹(shù)的產(chǎn)量隨之降低,若該果園每棵果樹(shù)產(chǎn)果y千克,增種果樹(shù)x棵,它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)解析式;
(2)在投入成本最低的情況下,增種果樹(shù)多少棵時(shí),果園可以收獲果實(shí)6750千克?
(3)當(dāng)增種果樹(shù)多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,點(diǎn)P為AC邊上的一點(diǎn),延長(zhǎng)BP至點(diǎn)D,使得AD=AP,當(dāng)AD⊥AB時(shí),過(guò)D作DE⊥AC于E,AB-BC=4,AC=8,則△ABP面積為_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com