【題目】今年春北方嚴(yán)重干旱,某社區(qū)人畜飲水緊張,每天需從社區(qū)外調(diào)運(yùn)飲用水120噸,有關(guān)部門(mén)緊急部署,從甲、乙兩水廠調(diào)運(yùn)飲用水到社區(qū)供水點(diǎn),甲廠每天最多可調(diào)出80噸,乙廠每天最多可調(diào)出90噸,從兩水廠運(yùn)水到社區(qū)供水點(diǎn)的路程和運(yùn)費(fèi)如下表:


到社區(qū)供水點(diǎn)的路程(千米)

運(yùn)費(fèi)(元/·千米)

甲廠

20

12

乙廠

14

15

1】若某天調(diào)運(yùn)水的總運(yùn)費(fèi)為26700元,則從甲、乙兩水廠各調(diào)運(yùn)多少噸飲用水?

2】設(shè)從甲廠調(diào)運(yùn)飲用水噸,總運(yùn)費(fèi)為W元,試寫(xiě)出W關(guān)于與的函數(shù)關(guān)系式,怎樣安排調(diào)運(yùn)方案才能使每天的總運(yùn)費(fèi)最省?

【答案】

1】 設(shè)從甲廠調(diào)運(yùn)了x噸飲用水,從乙廠調(diào)運(yùn)了y噸飲用水,

由題意得:,

解得:

∵50≤80,70≤90,

符合條件,

從甲、乙兩水廠各調(diào)運(yùn)了50噸、70噸飲用水;(4分)

2】 從甲廠調(diào)運(yùn)飲用水x噸,則需從乙調(diào)運(yùn)水120-x噸,

∵x≤80,且120-x≤90,

∴30≤x≤80

總運(yùn)費(fèi)W=20×12x+14×15120-x=30x+25200

∵WX的增大而增大,

當(dāng)x=30時(shí),W最小=26100元,

每天從甲廠調(diào)運(yùn)30噸,從乙廠調(diào)運(yùn)90噸,每天的總運(yùn)費(fèi)最。5分)

【解析】

試題(1)設(shè)從甲廠調(diào)運(yùn)飲用水x噸,從乙廠調(diào)運(yùn)飲用水y噸,根據(jù)每天需從社區(qū)外調(diào)運(yùn)飲用水120噸,調(diào)運(yùn)水的總運(yùn)費(fèi)為26700即可列方程組求解;

2)設(shè)從甲廠調(diào)運(yùn)飲用水x噸,則需從乙廠調(diào)運(yùn)水(120x)噸,根據(jù)甲廠每天最多可調(diào)出80噸,乙廠每天最多可調(diào)出90即可列不等式組求得x的范圍,再根據(jù)題意列出關(guān)于的函數(shù)關(guān)系式,最后根據(jù)一次函數(shù)的性質(zhì)求解即可.

1)設(shè)從甲廠調(diào)運(yùn)飲用水x噸,從乙廠調(diào)運(yùn)飲用水y噸,根據(jù)題意得

解得

∵5080,7090符合條件

故從甲、乙兩水廠各調(diào)用了50噸、70噸飲用水;

2)設(shè)從甲廠調(diào)運(yùn)飲用水x噸,則需從乙廠調(diào)運(yùn)水(120x)噸,根據(jù)題意可得

解得.

總運(yùn)費(fèi),(

∵Wx的增大而增大,故當(dāng)時(shí),.

每天從甲廠調(diào)運(yùn)30噸,從乙廠調(diào)運(yùn)90噸,每天的總運(yùn)費(fèi)最省,最少為26100.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.

(1)求這條拋物線的表達(dá)式;

(2)求∠ACB的度數(shù);

(3)點(diǎn)D是拋物線上的一動(dòng)點(diǎn),是否存在點(diǎn)D,使得tan∠DCB=tan∠ACO.若存在,請(qǐng)求出點(diǎn)D的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中有一△BOD,,把 BO 繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn) 90°OA 連接AB,作于點(diǎn) C,點(diǎn)B 的坐標(biāo)為(1,3.

1)求直線AB 的解析式;

2)若AB 中點(diǎn)為 M,連接 CM,動(dòng)點(diǎn) P、Q 同時(shí)從 C 點(diǎn)出發(fā),點(diǎn) P 沿射線CM 以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q沿線段CD 以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn) D 運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到D 點(diǎn)時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)△PQO 的面積為 S),運(yùn)動(dòng)時(shí)間為t秒,求St的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍;

3)在(2)的條件下,是否存在這樣的 P 點(diǎn),使得P、O、B為頂點(diǎn)的三角形是直角三角形?若存在,求出對(duì)應(yīng)的t 值和此時(shí)Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,過(guò)原點(diǎn)O及點(diǎn)A(0,4)、C(12,0)作矩形OABC,∠AOC的平分線交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P移動(dòng)到點(diǎn)D時(shí),求出此時(shí)t的值.

(2)當(dāng)t為何值時(shí),△PQB為直角三角形.

(3)已知過(guò)O、P、Q三點(diǎn)的拋物線解析式為y=﹣.問(wèn)是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】放假時(shí)小華父子倆一同出發(fā)去露營(yíng),步行途中小華發(fā)現(xiàn)睡袋忘拿了跑步回家取,之后立刻返程跑步追趕爸爸,期間爸爸繼續(xù)步行去往露營(yíng)地,會(huì)合時(shí)爸爸發(fā)現(xiàn)還需要探照燈,為節(jié)約時(shí)間爸爸乘車回家去拿,小華繼續(xù)步行至露營(yíng)地,爸爸拿到探照燈后乘車也到了終點(diǎn)(假定步行、跑步和汽車均為勻速,且二人取物品時(shí)間忽略不計(jì)),二人之間的距離s(米)與他們出發(fā)時(shí)間t(分鐘)之間的關(guān)系如圖所示,則當(dāng)爸爸到家時(shí),小華與露營(yíng)地相距_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,,、分別為,上的兩動(dòng)點(diǎn),從點(diǎn)開(kāi)始以的速度向點(diǎn)運(yùn)動(dòng),從點(diǎn)開(kāi)始以的速度向點(diǎn)運(yùn)動(dòng),當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí),、兩點(diǎn)就同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為

(1)的代數(shù)式分別表示的長(zhǎng);

(2)設(shè)的面積為,

的面積的關(guān)系式;

當(dāng)時(shí),的面積是多少?

(3)當(dāng)為多少秒時(shí),以點(diǎn)、為頂點(diǎn)的三角形與相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索規(guī)律:下列圖案是山西晉商大院窗格的一部分,其中“○”代表窗紙上所貼的剪紙,隨著基本圖案的增加所貼剪紙“○”的總個(gè)數(shù)也在發(fā)生變化.

1)填寫(xiě)下表:

個(gè)圖案

1

2

3

4

……

“○”的總個(gè)數(shù)

……

2)請(qǐng)你寫(xiě)出第個(gè)圖案中“○”的總個(gè)數(shù)之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解我市中學(xué)生跳繩活動(dòng)開(kāi)展的情況,隨機(jī)抽查了全市八年級(jí)部分同學(xué)1分鐘跳繩的次數(shù),將抽查結(jié)果進(jìn)行統(tǒng)計(jì),并繪制成如下的兩個(gè)不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)本次共抽查了多少名學(xué)生?請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(2)若本次抽查中,跳繩次數(shù)在125次以上(含125次)為優(yōu)秀,請(qǐng)你估計(jì)全市8000名八年級(jí)學(xué)生中有多少名學(xué)生的成績(jī)?yōu)閮?yōu)秀;

(3)請(qǐng)你根據(jù)以上信息,對(duì)我市開(kāi)展的學(xué)生跳繩活動(dòng)情況談?wù)勛约旱目捶ɑ蚪ㄗh.

查看答案和解析>>

同步練習(xí)冊(cè)答案