已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1∶2.4的斜坡AP攀行了26米,在坡頂A處又測(cè)得該塔的塔頂B的仰角為76°.

求:(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

(1)10米;(2)19米

解析試題分析:(1)過點(diǎn)A作AH⊥PQ,垂足為點(diǎn)H.
∵斜坡AP的坡度為1∶2.4,∴.            
設(shè)AH=5k,則PH=12k,由勾股定理,得AP=13k.
∴13k=26.解得k=2.∴AH=10.
答:坡頂A到地面PQ的距離為10米.              
(2)延長(zhǎng)BC交PQ于點(diǎn)D.
∵BC⊥AC,AC∥PQ,∴BD⊥PQ.
∴四邊形AHDC是矩形,CD=AH=10,AC=DH.
∵∠BPD=45°,∴PD=BD.
設(shè)BC=x,則x+10=24+DH.∴AC=DH=x-14.
在Rt△ABC中,,即.      
解得,即.                             
答:古塔BC的高度約為19米.   
考點(diǎn):解三角形
點(diǎn)評(píng):本題考查三角形的有關(guān)知識(shí),本題是利用三角形的知識(shí)及三角函數(shù),勾股定理來解答,要求考生掌握

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22.已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測(cè)得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).
(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市沛縣九年級(jí)一檢前校內(nèi)模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1∶2.4的斜坡AP攀行了26米,在坡頂A處又測(cè)得該塔的塔頂B的仰角為76°.

求:(1)坡頂A到地面PQ的距離;

(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測(cè)得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).
(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年吉林省中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測(cè)得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).
(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

同步練習(xí)冊(cè)答案