(2010•沈陽)如圖,在?ABCD中,點E在邊BC上,BE:EC=1:2,連接AE交BD于點F,則△BFE的面積與△DFA的面積之比為   
【答案】分析:由于平行四邊形的對邊相等,根據(jù)BE、EC的比例關(guān)系即可得到BE、AD的比例關(guān)系;易證得△BFE∽△DFA,已知了BE、AD的比例關(guān)系(即兩個三角形的相似比),根據(jù)相似三角形的面積比等于相似比的平方即可得解.
解答:解:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC;
∵BE:EC=1:2,
∴BE:BC=1:3,即BE:AD=1:3;
易知:△BEF∽△DAF,
∴S△BFE:S△DFA=BE2:AD2=1:9.
點評:此題主要考查的是平行四邊形和相似三角形的性質(zhì);相似三角形的對應(yīng)邊的比等于相似比,面積比等于相似比的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(32)(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2010•沈陽)如圖,AB是⊙O的直徑,點C在BA的延長線上,直線CD與⊙O相切于點D,弦DF⊥AB于點E,線段CD=10,連接BD.
(1)求證:∠CDE=2∠B;
(2)若BD:AB=:2,求⊙O的半徑及DF的長.

查看答案和解析>>

同步練習(xí)冊答案