(2010•沈陽)如圖,AB是⊙O的直徑,點C在BA的延長線上,直線CD與⊙O相切于點D,弦DF⊥AB于點E,線段CD=10,連接BD.
(1)求證:∠CDE=2∠B;
(2)若BD:AB=:2,求⊙O的半徑及DF的長.

【答案】分析:(1)連接OD,根據(jù)弦切角定理得∠CDE=∠EOD,再由同弧所對的圓心角是圓周角的2倍,可得∠CDE=2∠B;
(2)連接AD,根據(jù)三角函數(shù),求得∠B=30°,則∠EOD=60°,推得∠C=30°,根據(jù)∠C的正切值,求出圓的半徑,再在Rt△CDE中,利用∠C的正弦值,求得DE,從而得出DF的長.
解答:(1)證明:連接OD.
∵直線CD與⊙O相切于點D,
∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°. (2分)
又∵DF⊥AB,∴∠DEO=∠DEC=90°.
∴∠EOD+∠ODE=90°,
∴∠CDE=∠EOD.                       (3分)
又∵∠EOD=2∠B,
∴∠CDE=2∠B.                       (4分)

(2)解:連接AD.
∵AB是⊙O的直徑,
∴∠ADB=90°.                         (5分)
∵BD:AB=,

∴∠B=30°.                          (6分)
∴∠AOD=2∠B=60°.
又∵∠CDO=90°,
∴∠C=30°.                          (7分)
在Rt△CDO中,CD=10,
∴OD=10tan30°=,
即⊙O的半徑為.                 (8分)
在Rt△CDE中,CD=10,∠C=30°,
∴DE=CDsin30°=5.                    (9分)
∵DF⊥AB于點E,
∴DE=EF=DF.
∴DF=2DE=10.                        (10分)
點評:本題考查的是切割線定理,切線的性質定理,勾股定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(32)(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設點A的坐標為(m,n)(m>0).
①當PO=PF時,分別求出點P和點Q的坐標;
②在①的基礎上,當正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設點A的坐標為(m,n)(m>0).
①當PO=PF時,分別求出點P和點Q的坐標;
②在①的基礎上,當正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省沈陽市中考數(shù)學試卷(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設點A的坐標為(m,n)(m>0).
①當PO=PF時,分別求出點P和點Q的坐標;
②在①的基礎上,當正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省沈陽市中考數(shù)學試卷(解析版) 題型:填空題

(2010•沈陽)如圖,在?ABCD中,點E在邊BC上,BE:EC=1:2,連接AE交BD于點F,則△BFE的面積與△DFA的面積之比為   

查看答案和解析>>

同步練習冊答案