【題目】已知:在△ABC中,AC=BC,點D在△ABC外部,且∠ACB+∠ADB=180°,連接AB、CD.
(1)如圖1,當(dāng)∠ACB=90°時,則∠ADC=______°.
(2)如圖2,當(dāng)∠ACB=60°時,求證:DC平分∠ADB.
【答案】(1)45°;(2)證明見解析.
【解析】
(1)延長AD和CB,相交于點E,如圖1,先判斷△ABC為等腰直角三角形得到∠ABC=45°,再利用等角的余角可得∠BDE=∠ACB,則可判斷△EBD∽△EAC,所以ED:EC=EB:EA,則ED:EB=EC:EA,加上∠DEC=∠BEA,則可判斷△EDC∽△EBA,所以∠2=∠1,然后利用三角形內(nèi)角和定理可得∠ADC=∠ABC=45°;
(2)延長AD和CB,相交于點E,如圖2,先判斷△ABC為等邊三角形得到∠ABC=60°,與(1)一樣可證明∠2=∠1,則∠ADC=∠ABC=60°,再計算出∠BDC=60°,于是可判斷DC平分∠ADB.
(1)延長AD和CB,相交于點E,如圖1,∵AC=BC,∠ACB=90°,
∴△ABC為等腰直角三角形,
∴∠ABC=45°,
∵∠ACB+∠ADB=180°,
而∠BDE+∠ADB=180°,∴∠BDE=∠ACB,
而∠BED=∠AEC,∴△EBD∽△EAC,
∴ED:EC=EB:EA,
∴ED:EB=EC:EA,
而∠DEC=∠BEA,∴△EDC∽△EBA,
∴∠2=∠1,
∴∠ADC=∠ABC=45°,
(2)證明:延長AD和CB,相交于點E,如圖2,
∵AC=BC,∠ACB=60°,
∴△ABC為等邊三角形,
∴∠ABC=60°,
與(1)一樣可證明△EDC∽△EBA,
∴∠2=∠1,
∴∠ADC=∠ABC=60°,
而∠ADB=180°-∠ACB=60°=120°,
∴∠BDC=60°,
∴DC平分∠ADB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( )
A.y值隨x值的增大而增大
B.它的圖象與x軸交點坐標(biāo)為(0,1)
C.它的圖象必經(jīng)過點(﹣1,3)
D.它的圖象經(jīng)過第一、二、三象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+3x+1﹣m=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為負整數(shù),求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,AB=14,AD= 4 , CD=7.直線l經(jīng)過A,D兩點,且sin∠DAB= . 動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點P作PM垂直于AB,與折線A→D→C相交于點M,當(dāng)P,Q兩點中有一點到達終點時,另一點也隨之停止運動.設(shè)點P,Q運動的時間為t秒(t>0),△MPQ的面積為S.
(1)求腰BC的長;
(2)當(dāng)Q在BC上運動時,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;
(4)隨著P,Q兩點的運動,當(dāng)點M在線段DC上運動時,設(shè)PM的延長線與直線l相交于點N,試探究:當(dāng)t為何值時,△QMN為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在點上正方的處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿足函數(shù)表達式.已知點與球網(wǎng)的水平距離為,球網(wǎng)的高度為.
(1)當(dāng)時,①求的值.②通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到點的水平距離為,離地面的高度為的處時,乙扣球成功,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),點D在BC上,AB與CE相交于點F
(1) 如圖1,直接寫出AB與CE的位置關(guān)系
(2) 如圖2,連接AD交CE于點G,在BC的延長線上截取CH=DB,射線HG交AB于K,求證:HK=BK
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地,兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示,則下列說法正確的是( )
①當(dāng)分鐘時甲乙兩人相遇;
②甲的速度為40米/分鐘;
③乙的速度為50米/分鐘;
④乙到達目的地時,甲離目的地的距離為800米.
A.①②B.③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com