(2013•荊門(mén))為了節(jié)約資源,科學(xué)指導(dǎo)居民改善居住條件,小王向房管部門(mén)提出了一個(gè)購(gòu)買(mǎi)商品房的政策性方案.
人均住房面積(平方米) 單價(jià)(萬(wàn)元/平方米)
不超過(guò)30(平方米) 0.3
超過(guò)30平方米不超過(guò)m(平方米)部分(45≤m≤60) 0.5
超過(guò)m平方米部分 0.7
根據(jù)這個(gè)購(gòu)房方案:
(1)若某三口之家欲購(gòu)買(mǎi)120平方米的商品房,求其應(yīng)繳納的房款;
(2)設(shè)該家庭購(gòu)買(mǎi)商品房的人均面積為x平方米,繳納房款y萬(wàn)元,請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該家庭購(gòu)買(mǎi)商品房的人均面積為50平方米,繳納房款為y萬(wàn)元,且57<y≤60 時(shí),求m的取值范圍.
分析:(1)根據(jù)房款=房屋單價(jià)×購(gòu)房面積就可以表示出應(yīng)繳房款;
(2)由分段函數(shù)當(dāng)0≤x≤30,當(dāng)30<x≤m時(shí),當(dāng)x>m時(shí),分別求出y與x之間的表達(dá)式即可;
(3)當(dāng)50≤m≤60和當(dāng)45≤m<50時(shí),分別討論建立不等式組就可以求出結(jié)論.
解答:解:(1)由題意,得
三口之家應(yīng)繳購(gòu)房款為:0.3×90+0.5×30=42(萬(wàn)元);

(2)由題意,得
①當(dāng)0≤x≤30時(shí),y=0.3×3x=0.9x
②當(dāng)30<x≤m時(shí),y=0.9×30+0.5×3×(x-30)=1.5x-18
③當(dāng)x>m時(shí),y=0.3×3×30+0.5×3(m-30)+0.7×3×(x-m)=2.1x-18-0.6m
∴y=
0.9x                    (0≤x≤30)
1.5x-18               (30<x≤m)        (45≤m≤60)
2.1x-18-0.6m      (x>m)


(3)由題意,得
①當(dāng)50≤m≤60時(shí),y=1.5×50-18=57(舍).                    
②當(dāng)45≤m<50時(shí),y=2.1×50-0.6m-18=87-0.6m.
∵57<y≤60,
∴57<87-0.6m≤60,
∴45≤m<50.
綜合①②得45≤m<50.
點(diǎn)評(píng):本題考查了房款=房屋單價(jià)×購(gòu)房面積在實(shí)際生活中的運(yùn)用,求分段函數(shù)的解析式的運(yùn)用,建立不等式組求解的運(yùn)用,解答本題時(shí)求出函數(shù)額解析式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•荊門(mén)模擬)若x-1=
5
,則代數(shù)式(x+1)2-4(x+1)+4的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•荊門(mén)模擬)如圖,已知點(diǎn)A(8,0),sin∠ABO=
4
5
,拋物線(xiàn)經(jīng)過(guò)點(diǎn)O、A,且頂點(diǎn)在△AOB的外接圓上,則此拋物線(xiàn)的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•荊門(mén)模擬)已知:如圖,在△ABC中,AD⊥BC,垂足為點(diǎn)D,BE⊥AC,垂足為點(diǎn)E,M為AB邊的中點(diǎn),連結(jié)ME、MD、ED.設(shè)AB=4,∠DBE=30°.則△EDM的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•荊門(mén)模擬)已知關(guān)于x的一元二次方程x2-4x+2(k-1)=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)如果方程的兩個(gè)根均為整數(shù),求正整數(shù)k的值;
(3)在(2)的條件下,若直線(xiàn)y=-kx+b與x軸、y軸分別交于點(diǎn)A、D,與雙曲線(xiàn)y=
nx
(n>0)交于點(diǎn)B、C(B在C的左邊),且AB•AC=4,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•荊門(mén)模擬)如圖,在平面直角坐標(biāo)系中,將直線(xiàn)y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過(guò)B(-3,0)及y軸上的C點(diǎn).若拋物線(xiàn)y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),且經(jīng)過(guò)點(diǎn)C,其對(duì)稱(chēng)軸與直線(xiàn)BC交于點(diǎn)E,與x軸交于點(diǎn)F.
(1)求直線(xiàn)BC及拋物線(xiàn)的解析式;
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為D,點(diǎn)P在拋物線(xiàn)的對(duì)稱(chēng)軸上,若∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在拋物線(xiàn)上是否存在點(diǎn)M,使得直線(xiàn)CM把四邊形EFOC分成面積相等的兩部分?若存在,請(qǐng)求出直線(xiàn)CM的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案