【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間具有某種函數(shù)關(guān)系,其對(duì)應(yīng)規(guī)律如下表所示
售價(jià)x(元/本) | … | 22 | 23 | 24 | 25 | 26 | 27 | … |
銷售量y(件) | … | 36 | 34 | 32 | 30 | 28 | 26 | … |
(1)請(qǐng)直接寫(xiě)出y與x的函數(shù)關(guān)系式: .
(2)設(shè)該文店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為W元,寫(xiě)出W與x之間的函數(shù)關(guān)系式,并求出該紀(jì)念冊(cè)的銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)每周所獲利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】(1)y=﹣2x+80;(2)W=﹣2x2+120x﹣1600;當(dāng)該紀(jì)念冊(cè)銷售單價(jià)定為30元/件時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大,最大利潤(rùn)是200元
【解析】
(1)由表中數(shù)據(jù)可知,y是x的一次函數(shù),設(shè)y=kx+b,代入表中的兩組數(shù)據(jù),即可得出函數(shù)解析式,再將其余數(shù)據(jù)驗(yàn)證一下更好;
(2)根據(jù)(售價(jià)-進(jìn)價(jià))×銷售量=利潤(rùn),列出函數(shù)關(guān)系式,再由二次函數(shù)的性質(zhì)可得何時(shí)取最大值即可.
(1)由表中數(shù)據(jù)可知,y是x的一次函數(shù),設(shè)y=kx+b,由題意得:
解得
∴y=﹣2x+80
檢驗(yàn):當(dāng)x=24時(shí),y=﹣2×24+80=32;當(dāng)x=25時(shí),y=﹣2×25+80=30;
當(dāng)x=26時(shí),y=﹣2×26+80=28; 當(dāng)x=27時(shí),y=﹣2×27+80=26.
故y=﹣2x+80符合要求.
故答案為:y=﹣2x+80.
(2)W與x之間的函數(shù)關(guān)系式為:
W=(x﹣20)(﹣2x+80)
=﹣2x2+120x﹣1600
=﹣2(x﹣30)2+200,
∵﹣2<0
∴當(dāng)x=30時(shí),W的值最大,最大值為200元.
∴W與x之間的函數(shù)關(guān)系式為W=﹣2x2+120x﹣1600;當(dāng)該紀(jì)念冊(cè)銷售單價(jià)定為30元/件時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大,最大利潤(rùn)是200元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形OABC是矩形,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,6),點(diǎn)P從點(diǎn)O出發(fā),沿線段OA以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿線段AB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B移動(dòng),當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)移動(dòng)停止.設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒.
(1)當(dāng)△CBQ與△PAQ相似時(shí),求t的值;
(2)當(dāng)t=1時(shí),拋物線y=x2+bx+c經(jīng)過(guò)P,Q兩點(diǎn),與y軸交于點(diǎn)M,拋物線的頂點(diǎn)為K,如圖②所示,該拋物線上是否存在點(diǎn)D,使∠MQD=∠MKQ?若存在,請(qǐng)求出所有滿足條件的點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+2k-5=0有兩個(gè)實(shí)數(shù)根.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程的一個(gè)實(shí)數(shù)根為4,求k的值和另一個(gè)實(shí)數(shù)根.
(3)若k為正整數(shù),且該方程的根都是整數(shù),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了增強(qiáng)學(xué)生的安全意識(shí),某校組織了一次全校2500名學(xué)生都參加的“安全知識(shí)”考試.閱卷后,學(xué)校團(tuán)委隨機(jī)抽取了100份考卷進(jìn)行分析統(tǒng)計(jì),發(fā)現(xiàn)考試成績(jī)(x分)的最低分為51分,最高分為滿分100分,并繪制了如下尚不完整的統(tǒng)計(jì)圖表.請(qǐng)根據(jù)圖表提供的信息,解答下列問(wèn)題:
(1)填空:a=______,b=______,n=______;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)該校對(duì)考試成績(jī)?yōu)?/span>91≤x≤100的學(xué)生進(jìn)行獎(jiǎng)勵(lì),按成績(jī)從高分到低分設(shè)一、二、三等獎(jiǎng),并且一、二、三等獎(jiǎng)的人數(shù)比例為1:3:6,請(qǐng)你估算全校獲得二等獎(jiǎng)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,將Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ADE,則BC邊掃過(guò)圖形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E,F分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解節(jié)能減排、垃圾分類等知識(shí)的普及情況,從該校2000名學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,調(diào)查結(jié)果分為“非常了解”、“了解”、“了解較少”、“不了解”四類,并將調(diào)查結(jié)果繪制成如圖所示兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖并填空,本次調(diào)查的學(xué)生共有 名,估計(jì)該校2000名學(xué)生中“不了解”的人數(shù)為 .
(2)“非常了解”的4人中有A1、A2兩名男生,B1、B2兩名女生,若從中隨機(jī)抽取兩人去參加環(huán)保知識(shí)競(jìng)賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小彬做了探究物體投影規(guī)律的實(shí)驗(yàn),并提出了一些數(shù)學(xué)問(wèn)題請(qǐng)你解答:
(1)如圖1,白天在陽(yáng)光下,小彬?qū)⒛緱U水平放置,此時(shí)木桿在水平地面上的影子為線段.
①若木桿的長(zhǎng)為,則其影子的長(zhǎng)為 ;
②在同一時(shí)刻同一地點(diǎn),將另一根木桿直立于地面,請(qǐng)畫(huà)出表示此時(shí)木桿在地面上影子的線段;
(2)如圖2,夜晚在路燈下,小彬?qū)⒛緱U水平放置,此時(shí)木桿在水平地面上的影子為線段.
①請(qǐng)?jiān)趫D中畫(huà)出表示路燈燈泡位置的點(diǎn);
②若木桿的長(zhǎng)為,經(jīng)測(cè)量木桿距離地面,其影子的長(zhǎng)為,則路燈距離地面的高度為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+mx+n經(jīng)過(guò)點(diǎn)B(6,1),C(5,0),且與y軸交于點(diǎn)A.
(1)求拋物線的表達(dá)式及點(diǎn)A的坐標(biāo);
(2)點(diǎn)P是y軸右側(cè)拋物線上的一點(diǎn),過(guò)點(diǎn)P作PQ⊥OA,交線段OA的延長(zhǎng)線于點(diǎn)Q,如果∠PAB=45°.求證:△PQA∽△ACB;
(3)若點(diǎn)F是線段AB(不包含端點(diǎn))上的一點(diǎn),且點(diǎn)F關(guān)于AC的對(duì)稱點(diǎn)F′恰好在上述拋物線上,求FF′的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com